Infomina - Teknologi

Minapoli adalah platform jaringan infomasi dan bisnis perikanan terintegrasi. Buat dan bagikan informasi perikanan sekarang dan temukan manfaatnya terkoneksi dengan jaringan Minapoli.

Teknologi

Teknologi Canggih Solusi Petambak Udang
Teknologi

Teknologi Canggih Solusi Petambak Udang

AquaEasy, salah satu startup IoT di bidang akuakultur memiliki teknologi canggih yang dirancang seoptimal mungkin untuk membuat budidaya udang menjadi lebih produktif dan efisien. Sejak 2019 AquaEasy telah hadir di Indonesia dengan 3 layanan yakni Sensor, Software dan Service yang akan sangat membantu para teknisi di tambak maupun pelaku usaha.AquaEasy menawarkan 2 sensor canggih yaitu sensor fisika dan sensor kimia. Sensor fisika yang dimiliki dapat membantu untuk mendeteksi ph, DO, Salinitas dan berbagai macam parameter air yang dibutuhkan setiap harinya. Dengan menggunakan sensor fisika dari AquaEasy ini pastinya membuat para teknisi sudah tidak perlu menggunakan alat konvensional karena hanya dengan 1 alat maka data yang dibutuhkan sudah langsung terbaca. Selain itu hadir juga sensor kimia yang bisa menggantikan fungsi laboratorium di tambak udang. Sensor kimia hadir untuk membaca 8 parameter dalam waktu 60 detik! Waktu yang singkat bukan? Mengingat proses laboratorium yang memakan waktu cukup lama dengan biaya operasional yang cukup mahal.Kehadiran 2 sensor AquaEasy dilengkapi dengan aplikasi pintar yang bisa diakses melalui web browser maupun smartphone. Aplikasi pintar ini memungkinkan kita untuk menyimpan data yang dibaca sensor pada penyimpanan cloud. Tidak hanya itu, aplikasi AquaEasy juga memberikan notifikasi apabila terdapat anomali data untuk mengindikasi kolam yang kurang sehat. Pencatatan pertumbuhan udang dan pakan pun bisa dilakukan pada aplikasi canggih yang dimiliki AquaEasy.Sensor dan software yang ditawarkan AquaEasy ini memang memiliki banyak keunggulan, namun masih ada lagi yang ditawarkan yaitu service konsultasi dengan expert udang dari lokal dan internasional. Service ini ditawarkan oleh AquaEasy dalam satu paket untuk mempermudah pemecahan masalah yang ada di tambak. Jadi lengkap banget dari sistem pengukuran tambak yang mudah dan canggih, software canggih untuk menganalisis dan menotifikasi kondisi udang, konsultasi dengan expert udang pun disediakan. Jadikan AquaEasy solusi untuk tambak udang kamu supaya lebih produktif dan efisien yuk! Dapatkan info lebih lengkap tentang AquaEasy hanya di minapoli. ...
Begini Teknologi Image Recognition Diterapkan di Sektor Budidaya Ikan
Teknologi

Begini Teknologi Image Recognition Diterapkan di Sektor Budidaya Ikan

Penerapan teknologi image recognition terus meruak ke berbagai sektor. Contohnya sistem penghitung ikan otomatis buatan Yanmar Marine Systems Co., Ltd. (YMS) yang dimanfaatkan untuk budidaya ikan tuna.Dalam budidaya ikan,  mengetahui jumlah ikan dalam setiap jaring adalah hal yang penting guna mengontrol volume produksi dan jumlah pakan. Dan dalam beberapa tahun terakhir, sebagai upaya mewujudkan pengelolaan sumber daya yang berkelanjutan, kapal penangkap ikan wajib memberikan laporan yang akurat tentang jumlah anak ikan tuna bluefin yang tertangkap, yang biasanya digunakan untuk pembibitan di tempat usaha tani ikan.Baca juga: Pengembangan Tambak Udang Vaname Manfaatkan Satelit AmerikaMetode yang digunakan saat ini cukup memakan waktu dan tenaga karena mengharuskan proses penghitungan jumlah ikan yang tertangkap secara manual dan penghitungan citra di bawah air secara visual ketika memindahkan ikan ke jaring akuakultur.Menjawab tantangan ini sekaligus mendukung industri budidaya perairan, YMS mengembangkan Automated Fish Counting System yang digadang-gadang dapat secara signifikan memangkas waktu yang dibutuhkan untuk menghitung jumlah ikan. Research & Development Center Yanmar memadukan teknologi image recognition dan teknologi processing dalam satu sistem terintegrasi yang terdiri dari hardware, seperti kamera bawah air dan komputer image processing.Dalam kondisi optimal, sistem berhasil menghitung tuna dengan akurasi lebih dari 98%.  Baca juga: Cara Kerja Recirculating Aquaculture System yang Perlu Anda KetahuiKe depannya, dengan sistem ini YMS ingin berkontribusi pada efisiensi yang lebih baik dan pengembangan industri perikanan dan budidaya perairan dengan cara mengurangi biaya pakan, memangkas waktu kerja, dan memfasilitasi pelaporan hasil tangkapan yang akurat.  Mulai dipasarkan di Jepang pada bulan April ini, sistem ini membekal konfigurasi standar berupa kamera bawah air (termasuk kabel video), onboard monitor, komputer untuk image processing, dan software. Sumber: infokomputer.grid.id ...
Prawn Farm Scales New Heights With High-Tech Vertical System
Teknologi

Prawn Farm Scales New Heights With High-Tech Vertical System

Fish and vegetable farming has already gone high-rise in land-scarce Singapore. Now, another type of farming has gone vertical.When the first harvest from Universal Aquaculture's Tuas South Link facility is ready come June, the sweet, juicy flesh of live vannamei prawns will be much easier to get hold of.For a start, the farm will be able to produce between 150kg and 200kg a day of the crustacean - also known as Pacific white shrimp, white-legged shrimp, king prawn, or bai xia.But as the high-tech system is modular and can be easily deployed at a larger industrial plot, chief executive Jeremy Ong said some 1,000kg of the prawns can be produced per day when the firm opens an additional site some time in the third quarter of next year.Also read: Farming Fish in the SkyUniversal Aquaculture is among the farms here that can benefit from the new $60 million Agri-Food Cluster Transformation Fund, the details of which were released last week during the debate over the budget of the Ministry of Sustainability and the Environment. It replaces the Agriculture Productivity Fund.Under the new fund, farmers looking to set up new sites or retrofit indoor spaces at industrial sites can also receive co-funding of up to $1.5 million to cover infrastructure and building costs, said the Singapore Food Agency, a unit under the ministry. This was not available previously.The new fund will also feature an expanded co-funding scope so farmers can use the money not just to boost yield but also, for instance, to bring in technology to reduce pollution and waste.It will also cover farms' expenses related to the upcoming Clean and Green Standard to be launched later this year, such as the purchase of equipment and certification-related fees.Also read: The Inside Story: CP Foods Move to Total Shrimp RASMr Ong said: "We are happy that the grant scope has expanded and are grateful for the opportunity to apply."He said transformation is key to Singapore meeting its "30 by 30" goal, which is to produce 30 per cent of the country's nutritional needs by 2030. Currently, the nation produces less than 10 per cent of its own food."It is painfully clear that we will not likely meet our 30 by 30 targets by using traditional farming methods," said Mr Ong.He added that the technology-upscaling component of the fund - which will provide co-funding support for the purchase of advanced farming technology solutions - is something his firm will consider.But he noted that the co-funding offer of 50 per cent of costs - or up to $700,000 - still "falls far short of what we need to build the next farm".At Universal Aquaculture's current facility in Tuas South Link, prawns are reared in a six-tier system. The controlled environment means the farm does not have to use antibiotics on the creatures, which are also not exposed to pollutants such as microplastics or mercury.Also read: Fish-Oil-Free Shrimp Diets may Benefit from DHA Additive InclusionTo reduce the energy requirements of a filtration system that relies on pumps to cleanse the water, Universal Aquaculture developed its own "hybrid biological recirculation system" - so the water can be reused in an energy-efficient way.This system harnesses the natural purifying abilities of beneficial bacteria and other aquatic plants, such as sea grapes that the firm can also sell.Professor William Chen, the Michael Fam chair professor in food science and technology at Nanyang Technological University, said it is "excellent" for farmers to be developing their own farming systems."This is important as not all commercial technology can be directly adopted without retrofitting for our local context," he said.Continued research and development may be helpful to improve the farming system, especially for novel technologies, he said.Singapore Food Agency chief executive Lim Kok Thai said the new fund will support farms as they shift towards making the most of technology to overcome the country's land and resource constraints."Not only will this contribute towards our food security, it will create good jobs such as agriculture and aquaculture specialist roles for our people," he added.Source: straitstimes.com ...
Cara Kerja Recirculating Aquaculture System yang Perlu Anda Ketahui
Teknologi

Cara Kerja Recirculating Aquaculture System yang Perlu Anda Ketahui

Recirculating aquaculture system didasarkan pada penggunaan filter mekanis dan biologis. Cara kerja sistem ini adalah dengan meresirkulasi air beberapa kali, kemudian disertai dengan penambahan air baru secara bertahap. Sebagai contohnya, 90% air yang berasal dari wadah budidaya digunakan kembali sedangkan sisanya (10%) dibuang atau dialirkan ke limbah pembuangan air. Sebelum air digunakan kembali, air yang berasal dari outlet wadah budidaya dialirkan melewati sistem mekanik untuk menghilangkan atau menyaring partikel yang berukuran besar. Selanjutnya akan melewati filter biologis dan beberapa fasilitas seperti oxygenation, UV atau Ozone disinfection, denitrification chamber, dan lain-lain. Mechanical treatmentPada kegiatan budidaya, pemberian pakan merupakan hal yang wajib dilakukan agar ikan dapat tumbuh dan berkembang biak. Namun pada faktanya, tidak semua pakan yang diberikan pada ikan akan termakan atau diserap oleh tubuh ikan.Sebagai contoh, pakan udang pada umumnya diformulasikan dengan kandungan protein sebesar 20 hingga 40 % (tergantung pada ukuran udang) dan mengandung sekitar 16% nitrogen. Namun, hanya 20 sampai 30% nitrogen yang dipertahankan sebagai biomassa udang. Sisanya, sekitar 70 hingga 80%, terakumulasi ke perairan. Pakan yang tidak tercerna diekskresikan ke dalam air sebagai kotoran (feses), yang kemudian disebut sebagai padatan tersuspensi dan bahan organik. Perlakuan secara mekanik digunakan untuk menghilangkan padatan tersuspensi yang berasal dari wadah budidaya.Terdapat 2 jenis perlakuan mekanis yang sering digunakan dalam RAS, yaitu sediment filter dan drumfilter. Sejauh ini, drumfilter merupakan jenis microscreen yang paling banyak digunakan dan dalam sistem ini. BiofilterSetelah padatan tersuspensi dihilangkan, proses selanjutnya adalah Biofiltration. Filter biologis berfungsi untuk menghilangkan amonia yang terkandung dalam air karena sangat berbahaya untuk lingkungan air dimana ikan dibudidayakan. Amonia kemudian akan digunakan oleh bakteri dan dikonversi menjadi nitrogen. Melalui mekanisme ini, nitrogen dapat dirilis ke udara tanpa mencemari kualitas air.  DegasserPada tahap ini dilakukan “gas removal” untuk menghilangkan gas-gas yang berbahaya seperti CO2 dan nitrit dari sistem dengan bantuan degassing technology. Oxygen enrichmentSetelah gas-gas berbahaya dihilangkan, oksigen ditambahkan ke dalam air dengan bantuan oxygenation technologies. Setelah itu, air akan siap untuk digunakan dan ditransferkan kembali ke dalam wadah budidaya. Setelah melewati beberapa tahapan diatas, air dapat digunakan kembali untuk kegiatan budidaya dan proses ini berlanjut beberapa kali dengan penambahan air baru pada saat yang bersamaan. Ditulis oleh:Muslikhah NurulAquaculture Technicial, CrustaNova GmbH ...
Pengembangan Tambak Udang Vaname Manfaatkan Satelit Amerika
Teknologi

Pengembangan Tambak Udang Vaname Manfaatkan Satelit Amerika

Udang Vaname menjadi salah satu komoditas ekspor yang terus meningkat setiap tahunnya dari Indonesia. Sentuhan teknologi diyakini mampu meningkatkan hasil panen udang Vaname melalui pemantauan air dan lokasi yang tepat.Selama ini dalam pembudidayaan udang Vaname dibutuhkan perhatian khusus, terutama kualitas air tambak. Para petani tambak udang Vaname melakukan pengukuran kualitas air tambak menggunakan teknik pengukuran parameter kualitas air secara konvensional. Andi Hamim Zaidan, M.Si, Ph.D, bersama tim Lembaga Ilmu Hayati Teknik dan Rekayasa (LIHTR) Universitas Airlangga mengembangkan teknik baru pengukuran kualitas air manfaatkan teknologi hiperspektral untuk budidaya tambak udang Vaname yang bekerja sama dengan PT. Surya Windu Kartika dari Banyuwangi.“Kami menawarkan solusi yang lebih praktis dan jauh lebih mudah, murah, dan juga lebih baik. Sehingga nanti, para petani tambak bisa melakukan praktis budidaya udang vanamei lebih baik. Teknologi ini diharapkan dapat meningkatkan kuantitas dan kualitas hasil panen persiklusnya,” kata Zaidan, Jumat (16/4/21).Baca juga: KKP Ciptakan Inovasi Kincir Air Tambak Hemat Energi Berbahan Baku Lokal & Ramah LingkunganIa melanjutkan, dalam pengembangan teknologinya, selain membuat sistem hiperspektral juga memanfaatkan satelit milik Amerika dan Eropa, yakni LANDSAT dan SENTINEL. Satelit-satelit tersebut digunakan sebagai surveillance untuk melihat kondisi tambak dan sekitarnya.Bahkan, data perairan seluruh Indonesia 10 tahun terakhir telah dipetakan dan dianalisis. Data tersebut digunakan untuk mengetahui area perairan mana yang berpotensi untuk dikembangkan sebagai tambak udang vanname. “Sehingga nanti kalau ada pengusaha untuk berminat membuka tambak baru, kita bisa memberikan data strategis lokasi-lokasi mana di Indonesia yang bisa dibuka untuk tambak udang vanamei,” jelas dosen Fisika itu.Zaidan mengungkapkan, dalam riset tersebut dikembangkan teknologi big data dan artificial intelligence. Sehingga data baik dari satelit maupun sistem hiperspektral yang dikembangkan dapat diolah dan bisa didapatkan data-data strategis sesuai dengan kebutuhan.Baca juga: Sistem Resirkulasi Air, Investasi Keberhasilan Budidaya AndaDalam pengolahan data, untuk mendapatkan parameter-parameter yang dibutuhkan dipilih kombinasi panjang gelombang dari satelit dan sistem hiperspektral yang dikembangkan. Kemudian dibuat satu algoritma untuk mendapatkan parameter-parameter yang dibutuhkan. Seperti distribusi dan kuantitas fitoplankton, potensi penyakit, dan nutrien baik yang ada di tambak maupun di perairan sekitar tambak.Untuk mengetahui akurasi teknologi baru ini, informasi yang didapat dibandingkan dengan pengukuran di lapangan. Dari riset yang dilakukan, didapatkan hasil yang sangat baik.Salah satu kelemahan surveillance dengan satelit adalah panjang gelombang yang tersedia terbatas, selain itu resolusinya kurang baik. Dengan begitu, tim LIHTR juga sedang mengembangkan teknologi yang dapat menangkap dari 300 hingga 315 panjang gelombang dengan resolusi yang baik.Baca juga: Aplikasi Teknologi Ini untuk Genjot Produktivitas Perikanan Budi Daya“Tapi memang kalau device kita sendiri memang terbatas. Artinya tidak bisa seperti satelit yang bisa meng-cover seluruh dunia. Jadi memang biasanya dipakai di tambak-tambak untuk melakukan surveillance kualitas air,” katanya. Baca juga: Pelaku Usaha Keluhkan Pasokan Udang Minim, Ini Kata Menteri TrenggonoDalam jangka panjang, teknologi hiperspektral nantinya akan dicoba dalam bidang medis sebagai alat diagnostik. “Selain untuk pertanian dan budidaya perairan, kami akan manfaatkan untuk aplikasi kesehatan nantinya,” jelasnya Sumber: SINDOnews.com ...
KKP Ciptakan Inovasi Kincir Air Tambak Hemat Energi Berbahan Baku Lokal & Ramah Lingkungan
Teknologi

KKP Ciptakan Inovasi Kincir Air Tambak Hemat Energi Berbahan Baku Lokal & Ramah Lingkungan

Budidaya udang menjadi salah satu primadona di kalangan pelaku usaha perikanan saat ini. Melihat pesatnya perkembangan usaha budidaya udang, berbagai teknologi pun terus dikembangkan. Salah satunya adalah inovasi kincir air tambak yang dikembangkan Politeknik Kelautan dan Perikanan Sidoarjo, Jawa Timur. Satuan pendidikan ini berada di bawah Badan Riset dan Sumber Daya Manusia Kelautan dan Perikanan (BRSDM), Kementerian Kelautan dan Perikanan (KKP).Kincir air merupakan salah satu sarana budidaya perikanan yang memiliki peran sangat penting dalam menciptakan kondisi agar terjadi keseimbangan ekosistem perairan tambak. Kincir air berperan dalam menyuplai oksigen perairan tambak dan membantu dalam proses pemupukan dan pencampuran karakteristik air tambak lapisan atas dan bawah. Pengoperasian kincir air juga membantu dalam membersihkan kotoran-kotoran yang ada di dasar tambak sehingga menstabilkan kualitas air.Pentingnya penggunaan kincir air dalam budidaya ikan dan udang, terutama yang dilakukan secara intensif ternyata membawa permasalahan tersendiri. Kincir air yang ada dipasaran harganya relatif mahal dan biaya operasional dan perawatannya besar.Baca juga: KKP: Budidaya Ikan Nila dengan Kincir Tingkatkan ProduktivitiasMelihat kondisi ini Politeknik KP Sidoarjo membuat inovasi teknologi kincir air hemat energi dari bahan lokal yang ada di sekitar, sehingga apabila ada kerusakan maka perawatannya ringan dan suku cadangnya mudah didapat. Melalui berbagai uji coba di perairan tambak ikan dan udang, Politeknik ini mengembangkan mesin kincir air hemat energi bertenaga listrik yang ramah lingkungan tanpa ada gas buang dan tidak menimbulkan kebisingan.Kepala BRSDM Sjarief Widjaja mengatakan, inovasi yang dikembangkan pihaknya mendukung tiga program terobosan KKP pada Tahun 2021-2024. Pertama, peningkatan Penerimaan Negara Bukan Pajak (PNBP) dari sumber daya alam perikanan tangkap untuk peningkatan kesejahteraan nelayan. Kedua, pengembangan perikanan budidaya untuk peningkatan ekspor. Ketiga, pembangunan kampung-kampung perikanan berbasis kearifan lokal. Inovasi kincir tambak Politeknik KP SIdoarjo khususnya mendukung poin kedua dan ketiga.Menurut Direktur Politeknik KP Sidoarjo Muhammad Hery Riyadi Alauddin, kincir tersebut berbahan baku lokal, yang memiliki tingkat komponen dalam negeri di atas 50%. Kontruksi kincir air ini memiliki penggerak motor listrik dengan komsumsi daya 0,5 HP 1 phase, dimana gear dan rantai sebagai transmisi daya  yang mereduksi putaran mesin dari 1400 RPM menjadi 110 RPM. Baca juga: Rakit Kincir Sendiri, Tekan Biaya ProduksiPutaran mesin hasil reduksi diteruskan poros utama berbahan baku pipa galvalum dengan ukuran 3/4 dim dan pillow block sebagai bantalan poros sehingga poros dapat berputar sempurna. Hasil putaran poros kemudian diteruskan oleh roda penggerak dari velg sepeda mini sebagai penopang daun kincir. Sebagai penopang seluruh komponen kincir ini dipasang rangka utama yang terbuat dari pipa galvalum yang dibentuk sesuai desain sehingga seluruh komponen ditopang. Kincir digunakan di kolam tambak selama 1 siklus (kurang lebih 3 bulan). Untuk membuat kincir air terapung maka dipasang pipa PVC dengan ukuran 6 dim sepanjang 2 meter sejumlah 2 buah untuk menopang beban kincir air sehingga dapat terapung seimbang di atas air. Untuk menghindari percikan air tambak dan air hujan maka dipasang penutup mesin dengan menggunakan plat gavalum sehingga air tidak dapat masuk ke dalam mesin penggerak.Sumber: KKPPembuatan maupun perakitan kincir mulai dari komponen rangka sampai dengan daun kincir dikerjakan oleh dosen dan taruna Program Studi Mekanisasi Perikanan Politeknik tersebut.  Temukan berbagai kincir air disini!Melalui hasil riset kolaborasi yang dilakukan mulai dari tahun 2015 sampai dengan sekarang, kincir ini memiliki keunggulan dibandingkan dengan yang lain, dimana dissolved oxygen (DO) yang dihasilkan tinggi, cakupan area maupun tinggi semburan maksimal, biaya operasional lebih murah, sparepart mudah didapatkan, perawatan mudah dikerjakan dan  tentu saja dengan harga lebih kompetitif. Dengan adanya kincir ini diharapkan akan menekan biaya operasional budidaya udang, sehingga pendapatan menjadi lebih meningkat dan kesejahteraan petambak terwujud.Upaya pengembangan terus dilakukan dengan menggandeng pihak lain. Pada 3 Maret 2021, Politeknik KP Sidoarjo menandatangani kerja sama berupa nota kesepahaman dengan PT.Barata Indonesia (Persero) pada Pameran Nasional Bangga Buatan Indonesia di The Mandalika Lombok, Nusa Tenggara Barat. Rencananya kincir air tersebut akan digunakan untuk mendukung program perikanan budidaya secara nasional, terutama budidaya udang.Selain itu, menurut Hery Riyadi, kincir air tambak hemat energi ini telah didaftarkan di Kementerian Hukum dan Hak Asasi Manusia melalui Sentra Hak Kekayaan Intelektual KKP  untuk mendapatkan paten. Kincir ini juga sedang diproses untuk mendapatkan Sertifikasi Standar Nasional Indonesia dari Badan Sertifikasi Nasional. Artikel asli ...
Sistem Resirkulasi Air, Investasi Keberhasilan Budidaya Anda
Teknologi

Sistem Resirkulasi Air, Investasi Keberhasilan Budidaya Anda

Air merupakan salah satu aspek yang penting dalam hal budidaya perikanan. Hal ini dikarenakan air merupakan media utama bagi ikan ataupun organisme air untuk hidup dan dapat dibudidayakan. Penggunaan air dalam budidaya perikanan sangat bervariasi, tergantung dari komoditas dan sistem produksinya. Sebagian besar air yang digunakan dalam budidaya udang di Indonesia diambil langsung dari laut. Sayangnya, tidak jarang limbah hasil budidayanya juga dibuang ke badan air yang sama dengan tempat awal air tersebut diambil.Tak heran, apabila kualitas air laut semakin menurun. Akibatnya, banyak juga penyakit yang kemudian masuk ke dalam sistem budidaya. Hal ini membuat perlu adanya manajemen penggunaan air di dalam aktivitas akuakultur. Selain dapat membatasi masuknya penyakit,  penggunaan air secara lebih efisien dalam budidaya dapat menghemat air untuk keperluan lainnya.Baca juga: Mengenal Lebih Jauh Sistem Akuakultur Resirkulasi (Recirculating Aquaculture System)Salah satu teknologi yang dapat digunakan dalam akuakultur adalah recirculating aquaculture system (RAS), bagi sebagian pembudidaya ikan recirculating system sudah tidak awam lagi. Pada umumnya ikan dibudidayakan di dalam ruangan di bawah lingkungan yang terkendali. tetapi, pada pengaplikasiannya sistem ini dapat digunakan di dalam maupun di luar ruangan. recirculating sytem didasarkan pada penggunaan filter mekanis dan biologis. Sistem sirkulasi atau penggunaan air yang sama dapat dilakukan pada intensitas yang berbeda, tergantung pada seberapa banyak air yang disirkulasi ulang.Oleh karena itu, sistem resirkulasi dapat dianggap sebagai cara yang paling ramah lingkungan untuk menghasilkan ikan pada tingkat yang layak secara komersial. Nutrisi yang dihasilkan dari limbah budidaya ikan, dapat digunakan sebagai pupuk pada lahan pertanian atau sebagai dasar produksi biogas. Baca juga: Budidaya Clownfish Sistem Resirkulasi Skala Rumah TanggaSistem resirkulasi ini telah berkembang pesat di banyak daerah budidaya ikan / udang. Tidak seperti budidaya ikan tradisional, di dalam RAS faktor eksternal (misalnya kualitas air: suhu, oksigen) dapat dihilangkan baik seluruhnya atau sebagian tergantung pada konstruksi dan tingkat sirkulasi ulang. Namun, penggunaan air kembali sebesar 90% dari total volume sangat mungkin untuk dilakukan. Dibandingkan dengan budidaya ikan tradisional, tentunya sistem resirkulasi memiliki manfaat yang sangat besar bagi para pembudidaya ikan. Tidak hanya ramah lingkungan, teknologi ini memungkinkan pembudidaya ikan untuk mengontrol semua parameter dalam produksinya, sehingga memberikan kondisi yang stabil untuk spesies budidaya. Sehingga dapat menghasilkan pola pertumbuhan yang stabil dan dapat diprediksi yang memungkinkan pembudidaya untuk memprediksi secara tepat kapan ikan akan mencapai tahap atau ukuran tertentu. Sistem resirkulasi cenderung membutuhkan biaya yang lebih besar. Biaya investasi dan energi biasanya menjadi aspek pengeluaran utama. Selain itu, RAS juga perlu dikendalikan dan dikelola oleh tenaga kerja terampil. Walaupun begitu, sistem ini tetap direkomendasikan untuk digunakan karena dapat mencegah kerugian akibat terserang penyakit. Ditulis oleh:Muslikhah NurulAquaculture Technicial, CrustaNova GmbH ...
Mengenal Lebih Jauh Sistem Akuakultur Resirkulasi (Recirculating Aquaculture System)
Teknologi

Mengenal Lebih Jauh Sistem Akuakultur Resirkulasi (Recirculating Aquaculture System)

Akuakultur atau yang biasa di kenal dengan budidaya perikanan merupakan cara pemeliharaan organisme akuatik dibawah lingkungan yang terkendali. Organisme akuatik disini, sesuai dengan definisi ikan menurut undang-undang No. 45 Tahun 2009, yakni bukan hanya ikan (pisces) saja, tetapi mollusca, crustacea dsb. Budidaya perikanan semakin hari semakin bertambah intensif, sejalan dengan kemajuan zaman dan teknologi. Beragam inovasi terus dikembangkan pemerintah Indonesia untuk mengangkat sektor perikanan budidaya sejajar dengan sektor yang sama di level internasional. Disebutkan oleh Direktur Jenderal Perikanan Budidaya (DJPB) Kementerian Kelautan dan Perikanan (KKP), Slamet Soebjakto, salah satu inovasi teknologi yang berhasil dikembangkan dalam budidaya perikanan di Indonesia adalah penerapan Recirculating Aquaculture System (RAS). Dimana RAS sebelumnya telah banyak di terapkan dibeberapa negara maju, seperti Amerika, Israel, Singapura, dan German.Baca juga: Budidaya Clownfish Sistem Resirkulasi Skala Rumah TanggaApa sih RAS itu?Sistem akuakultur resirkulasi adalah sebuah sistem sirkulasi air tambak dengan menggunakan kembali air budidaya yang telah di gunakan sebelumnya dan mengalami penurunan kualitas, tentunya setelah mengalami proses filtrasi. Untuk menggantikan budidaya ekstensif, budidaya resirkulasi ini sangat tepat dan sesuai bahkan untuk daerah yang memiliki debit air kecil serta lahan sempit. Sistem ini di bagi menjadi 2 macam, yaitu resirkulasi tertutup dimana air akan di daur ulang 100 % oleh sistem serta sistem resirkulasi semi tertutup yaitu ketika hanya sebagian air buangan yang di daur ulang, sehingga masih membutuhkan penambahan air dari luar.Lalu apa saja peralatan penting yang harus di miliki jika ingin menerapkan RAS?Peralatan yang digunakan dalam teknologi RAS, yang terpenting adalah tangki dan pompa. Biasanya tangki yang digunakan berbahan plastik, fiberglass, semen polytank dan sebagainya. Untuk informasi tambahan, di anjurkan untuk mengecat bagian dalam tangki dengan warna gelap/kelabu, sehingga tidak menyebabkan stres pada ikan.  Baca juga: Teknologi RAS Berhasil Tingkatkan Produksi Benih GuramePada teknologi RAS, di dalamnya berisi perangkat utama seperti:- Unit budidaya (tangki kultur) yang akan menjadi tempat pembudidayaan ikan.- Unit penyaring partikulat sebagai tempat untuk menyaring padatan terlarut agar tidak menyumbat biofilter atau pun mengonsumsi supply.- Unit biofiltration yang merupakan bagian utama dalam sistem resirkulasi dan sebagai tempat dimana proses nitrifikasi berlangsung.- Pompa resirkulasi yaitu pompa untuk mengarahkan, menaikkan dan mengalirkan air, yang dapat diatur sesuai kebutuhan.- Aerator sebagai sistem aerasi atau pemasok oksigen ke dalam kolam air.- Sistem sterilisasi air yang berfungsi  untuk membunuh mikroorganisme patogen, parasit dan bakteri, denga  penggunaan gas ozon dan ultaviolet (UV).Setelah tau peralatan apa saja yang di butuhkan, yang tidak kalah pentingnya yaitu bagaimana sih sistem akuakultur resirkulasi bekerja?Sistem ini dimulai saat air dari tangki kultur yang mengandung banyak kotoran akibat hasil dari metabolisme serta pakan ikan di alirkan secara gravitasi menuju bak filter melalui pipa yang terhubung. Di dalam bak filter ini, terjadi proses terpenting dari sistem akuakultur resirkulasi yaitu proses biofilter. Bak filter terdiri dari beberapa macam penyaringan seperti penyaringan mekanis, biologi, kimia serta bak sterilisasi.Pada filter mekanis bagian atas menggunakan spon untuk menyaring kotoran yang berukuran besar, seperti kotoran ikan. Pada bagian bawah menggunakan cangkang kerang air tawar, sebagai alternatif dapat juga digunakan arang atau kerikil ukuran besar sehingga air menjadi jernih.Setelahnya air mengalir melewati filter biologi, dimana pada bagian pertama memanfaatkan cangkang kerang sedangkan pada bagian kedua menggunakan kerikil lebih kecil atau ijuk untuk memperluas permukaan yang memungkinakan tempat penempelan bakteri nitrifikasi. Dalam filter ini, limbah dari pencernaan ikan yang menjadi amonia akan menjadi makanan bagi bakteri nitrifikasi yaitu Nitrisomonas, sehingga menghasilkan nitrit. Selanjutnya nitrit akan dilahap oleh bakteri Nitrobacter untuk dikonversi menjadi nitrat. Hal tersebut dapat menetralkan kandungan amonia yang larut dalam air.Tahapan akhir, air terus dialirkan menuju bak sterilisasi. Di dalam bak sterilisasi dilakukan penyinaran dengan sinar ultraviolet (UV) untuk mematikan parasit atau bakteri yang terdapat dalam air sehingga tidak membahayakan ikan yang dibudidayakan. Setelah itu, air dipompa dan didistribusikan kembali kedalam wadah budidaya (tangki kultur).Baca juga: Melihat Budidaya Cacing Sutera dengan Sistem ApartemenBagaimana cara pembudidayaan dengan sistem RAS ?1. Memahami mekanisme kerja sistem RAS di atas.2. Menyiapkan alat dan bahan.3. Bak filter di lubangi dengan. menggunakan alat tertentu tergantung dari bahan bak filter tersebut yang nantinya bisa membantu merekatkan pipa pada lubang.4. Pipa dipasang untuk menghubungkan tangki kultur dengan bak filter sesuai dengan urutan sehingga nanti air akan mengalir berurutan sesuai jalur, dari tangki kultur menuju bak filter fisika, biologi hingga kimia dan berakhir di bak sterilisasi dengan penggunaan UV. Ukuran pipa di sesuaikan saja dengan kebutuhan.5. Bak filter diisi dengan material yang sesuai konsep.6. Lakukan percobaan pengisian air agar mengetahui apakah bak filter ataupun pipa mengalami kebocoran atau tidak serta memastikan filter dapat bekerja secara stabil dan maksimal. Percobaan dilakukan tanpa adanya ikan di tangki kultur.7. Setelah dirasa tidak ada masalah, maka budidaya dengan sistem RAS ini bisa di terapkan, tentunya dengan tetap di kontrol secara berkala.Contoh budidaya dengan menerapkan sistem RASTeknologi Sistem Akuakultur Resirkulasi sudah dikembangkan selama 20 - 30 tahun di Norwegia dengan membudidayakan beberapa jenis ikan seperti salmon (Salmo salar), sidat (Anguilla anguilla), nila (Oreochromis niloticus), lobster (Homarus gammarus), dsb.Sementara itu, di Indonesia, teknologi RAS sudah berhasil dijalankan oleh beberapa daerah, salah satunya yaitu UPT Balai Perikanan Budidaya Air Tawar (BPBAT) Tatelu, Sulawesi Utara. Ikan yang di budidayakan yaitu ikan nila ukuran 2 - 3 cm dengan padat tebar 5.000 ekor/m3. Biaya investasi awal senilai kurang lebih Rp 80 juta dengan biaya penyusutan mencapai 13,3 juta pertahun dan biaya operasional berkisar 1,5 juta per bulan, maka setidaknya akan di raup pendapatan kotor hingga 100 juta/tahun atau lebih dari 8 juta/ bulan.Hal tersebut membuktikan bahwa budidaya dengan penerapan RAS, produktivitas bisa digenjot hingga 100 kali lipat dibanding dengan sistem konvensional yang padat tebarnya hanya mencapai mencapai 50 ekor/m2.Selain ikan nila, Indonesia juga sudah berhasil membudidayakan ikan lele, lobster pasir Panulirus homarus, dsb.Baca juga: Budidaya Ikan Nila di Kolam Air DerasKelebihan dan kekurangan RAS apa aja nih?Setelah membaca banyak informasi di atas, maka banyak sekali alasan yang melatarbelakangi penerapan Recirculating Aquaculture System diantaranya yaitu :- Dapat mengatasi permasalahan keterbatasan air karena pergantian air akan jauh lebih hemat sebab terus menerus di daur ulang.- Dapat mengatasi permasalahan lahan, karena hanya membutuhkan sedikit lahan.- Mampu menghasilkan produktivitas yang jauh lebih tinggi daripada budidaya secara konvensional.- Kualitas air lebih terjaga.- Lebih mudah dalam mengendalikan dan memelihara.- Ramah lingkungan.- Dapat dilaksanakan sepanjang waktu.Sedangkan kekurangan dari sistem ini yaitu lebih mahal dibandingkan budidaya konvensional, karena mengeluarkan biaya listrik, oksigen dan pembelian pompa.Maka dari itu, dengan berkembangnya teknologi budidaya perikanan di berbagai negara, negara Indonesia juga perlu melakukan banyak inovasi untuk mengembangkan teknologi tersebut. Hal ini dapat dilakukan dengan menerapkan teknologi sistem akuakultur resirkulasi di berbagai daerah, mengingat hingga kini masih sedikit pembudidaya yang telah menerapkan sistem tersebut padahal RAS sangat mendukung peningkatan produksi dan perbaikan teknologi akuakultur baik untuk pasaran lokal, regional, maupun internasional nantinya. Sumber: Kompasiana.com ...
Keeping Watch on The Water Source
Teknologi

Keeping Watch on The Water Source

As climate change and general concerns about the environmental impact of mass food production facilities increase, the aquaculture industry is looking inward and to scientific advances to improve operations, fish health and guarantee future growth.Hatcheries located within regions severely affected by climate change could face issues concerning flooding or lack of consistent groundwater sources. Those in more stable areas will be able to rely on technology and new advances in operations to keep things stable.“Hatcheries located outside of severely affected regions should be able to manage climate-change-related water quality fluctuations using standard control systems for temperature, salinity, pH and alkalinity,” says George Chamberlain, president of the Global Aquaculture Alliance in Portsmouth, New Hampshire.Water treatment systems for hatcheries must be designed to provide consistent water quality year-round, despite wide seasonal variations. Chamberlain says there’s often a tendency to develop facilities for the typical or average conditions, but this leads to variations in water quality and reduced hatchery performance during seasonal extremes.Also read: OptiFarm - Optimal Water Quality and Healthy Fish On LandPlan for the worstInstead, hatcheries should be designed for worst-case conditions. For example, many hatcheries in China must begin operating during the winter when air temperatures are near freezing and continue during the summer when temperatures approach 35 C. Greenhouse enclosures that may have been appropriate during the winter can become too hot during the summer.In another example, coastal hatcheries in India and South Asia can expect seasonal monsoon conditions with high winds and heavy rains. During this season, coastal waters will be impacted by reduced temperature and salinity and significantly increased turbidity from suspended sediments.“To minimize these variations, water intake pipelines should be deep enough to capture high salinity water; reservoirs, sedimentation, and filtration systems must be scaled to eliminate monsoon turbidity; and temperature controls must be designed for such cooler conditions,” says Chamberlain.Overtime, Chamberlain says there will be a trend toward installing systems that provide greater control and consistency.“For example, outdoor algal mass culture systems do not perform properly during overcast conditions. Consequently, most hatcheries have installed indoor algae culture systems under artificial lighting, and some have even installed indoor continuous culture algae systems to avoid the ups and downs of batch culture systems,” he says.Marine hatcheries attempt to simulate the conditions in nearshore oceanic waters where reproduction and larval development typically occur. Water quality monitoring and control are critical for maintaining those ideal culture conditions. To go a step further, each component of the hatchery (preconditioning of broodstock, maturation, spawning, hatching, larval rearing, nursery, algae culture, artemia hatching) often requires slightly different water quality conditions (temperature, salinity, dissolved oxygen, pH, alkalinity, ammonia, nitrite, nitrate) for optimal performance.“These parameters must be routinely monitored, recorded, and managed to maintain them within appropriate ranges. Ideally, monitoring and control processes are automated with alarms and backup systems, but manual processes can also work well if water quality is carefully monitored, recorded, and managed,” says Chamberlain.The rise of RASTo make better use of resources and maintain controls, hatcheries are increasingly implementing technologies that reuse water. George Nardi, vice-president of aquaculture services at Innovasea Systems Inc., says incorporating recirculating technology into operations addresses other concerns brought on by global warming. Before joining Innovasea, Nardi was the founder of Great Bay Aquaculture, a hatchery in Portsmouth, New Hampshire.“Climate change affects temperature and pH in coastal waters, and RAS allows further control of those conditions so you can produce a warm water species year-round in a temperate environment or vice versa. With RAS, you can afford to control temperature and have control over pH, and ammonia is directly related to the level of pH in the culture tank. Hence, controlling pH is important in hatchery or nursery operations,” says Nardi.Åse Åtland, research director at the Norwegian Institute for Water Research in Norway, says RAS is the way the industry is going in Norway and Chile with a focus on taking in as little new water as possible.“I would generally say recirculation farms using groundwater are the most robust way to deal with climate change challenges,” she says. “Water quality is surely a critical factor, but if it is not suitable, it’s not so much due to climate change but often based on groundwater and the local geology. The limiting factor is very often toxic metals and a natural phenomenon.”The institute does inlet water quality testing and works on assessing water quality when a company is in the process of choosing a new site or water source. It has been analysing inlet water quality in Norway since the 1990s and they have a large database from Chile and from the U.K. Also read: Benefits of Recirculating Aquaculture Systems“With salmon, how climate would change water quality is dependent on the technology the hatcheries are operating on. The RAS systems take in very little new water and are much more robust in terms of climate change effects because you can more easily treat the incoming water. And since you take in so little water, you won’t see the fluctuations.”Åtland says water quality in Norway is improving, but they are seeing more browning of water due to higher humic content. That’s an issue for the salmon hatcheries as the higher the humic content, the more complicated it is to have UV disinfection.Impact of feedingHow fish are fed also impacts water quality. This is recognized as enough of an issue that major feed companies are designing feeds for RAS systems to minimize the adverse effects on water quality.“If you feed once or twice a day, you can imagine the impact on the water quality and what your system has to deal with and recover from, only to get hammered again six hours later. But if you feed every other hour, that influence is flattened out so that your system and water quality is more consistent and is not affected by temporary pH and ammonia effects in the water,” Nardi explains.Also read: Polyculture Of Pikeperch Juveniles in Recirculating Aquaculture SystemsMonitoring and controlToday’s hatcheries are relatively intensive operations with hundreds of thousands of fish in the tanks, which means monitoring is critical.“I can tell you from experience it only takes an hour or two to lose all of that if things aren’t properly monitored and controlled,” says Nardi.As monitoring becomes more sophisticated, operators have to be properly trained.“Back in the day, I would have to have an on-site technician 24 hours a day – there was too much at risk if, through monitoring, I couldn’t make an adjustment within minutes,” he says.Today automation has become less expensive and more robust, so 24-hour human coverage isn’t required because the monitoring systems can control oxygen levels and control pumps and temperature.“You can see what’s happening from your kitchen table rather than being there at 2 a.m.,” he says.Oxygen and gas managementNardi says Innovasea is working to develop efficiencies that improve production, especially gas management, which he says is “the unseen danger” – primarily nitrogen and CO2.“What we see in the hatchery world is a lot of tried-and-true technology,” he says. “We see some new, but we also want to improve upon what’s there – can we make it lower cost, more efficient and improve productivity?”The U.S. Fish and Wildlife Service announced in May 2020 that it is installing Moleaer Inc.’s Neo nanobubble generator to improve water quality at the Garrison Dam National Fish Hatchery in North Dakota. The nanobubble generator will increase the dissolved oxygen levels and water quality by reducing nitrogen levels and suppressing waterborne pathogens. The hatchery started with a system that covered two raceways and has purchased more to do a proper retrofit of the whole facility.Nanobubbles increase productivity in agriculture, horticulture and aquaculture by increasing dissolved oxygen levels and water quality by reducing nitrogen levels and suppressing waterborne pathogens.Also read: A successful Case of Split Pond Recirculation Aquaculture System (SP-RAS) for Snakehead Fish Farming in Andhra Pradesh of India“Aquaculture is one of our newer markets, but it is a fairly seamless extension of what we have been doing in horticulture,” says Warren Russell, co-founder and chief commercial officer of California-based Moleaer Inc., adding the nanobubble generator can be applied to a range of operation sizes.“We have some customers doing aquaponics in 5,000-gallon tanks and some large salmon hatcheries doing millions of gallons a day,” he says.One of the critical parts of aquaculture is how to get oxygen into an ideal rearing environment and consequently reduce operational costs.“We started down this track by force of circumstance in Chile in the salmon industry where most of the hatcheries are either using oxygen cones or diffusers as their principal method of oxygenation,” says Russell. “In those cases, we are looking at retrofitting existing conventional aeration or oxygenation equipment. The sole purpose is reducing operational costs.”Where Russell sees the most potential for nanobubbles related to salmon is optimizing the oxygen mixing system in sea lice prevention.“The evidence to date based on various trials in Canada, Norway and Chile is that we are demonstrating not only can we provide a more optimal rearing environment, but we can reduce the operations costs too,” he says.  Source: Hatchery International ...
RAS Disinfection Strategies
Teknologi

RAS Disinfection Strategies

Disinfection is an important component of any aquaculture facility’s biosecurity protocols, as it plays a critical role in minimizing the likelihood of pathogen entry and spread within fish farms. Despite a consensus among producers regarding the overall importance of disinfection, and the availability of several published recommended guidelines, there is a general lack of documentation on the current status of disinfection strategies in aquaculture. This is particularly relevant in salmonid aquaculture, in which production technologies have advanced significantly in recent years. For example, many Atlantic salmon facilities are intensifying production by adapting recirculating aquaculture system (RAS) technologies during the land phase of the production cycle, which is a significant shift from traditional flow-through or partial water reuse systems.To gain insight into the present status of disinfection strategies at such facilities, a survey was conducted targeting selected salmonid producers in Norway and North America. The questionnaire covered key aspects of disinfection of materials and equipment in a RAS facility, including: general information about the disinfection protocols, information on the disinfectants in use, disinfection protocols of tanks and pipelines, disinfection of ancillary equipment, floor disinfection, disease outbreaks, and health and safety of staff. The facilities were selected based on their known use of land-based RAS technologies. Also read: Polyculture Of Pikeperch Juveniles in Recirculating Aquaculture SystemsThe survey did not specify the type of RAS technology being used in each site, was limited only to disinfection of materials and equipment, and did not include water disinfection.While it is not feasible to present all survey results in this short article, some interesting information was revealed regarding different disinfection strategies currently in use by major land-based RAS salmonid producers in Norway and North America. Some of the key similarities among the facilities between the two regions include the following: while the majority of facilities possess standardized disinfection protocols, disinfection efficiency has generally not been experimentally validated; the majority of facilities continually appraise their disinfection protocols, which highlights the dynamic nature of disinfection practices in RAS operations; when selecting disinfectant types, efficacy against pathogens and user safety are the most important criteria for producers; different disinfection approaches are used for different types of ancillary equipment, based on the actual equipment materials and specific disinfection requirements; although disease outbreaks within the past five years were uncommon among respondent facilities, immediate disinfection was carried out after each outbreak; and, facility staff are well-trained to carry out disinfection procedures, including proper use of protective gear and adherence to specific occupational health and safety guidelines.Also read: Benefits of Recirculating Aquaculture SystemsImportant differences between Norwegian and North American respondents were also revealed when assessing survey results. These differences included: most Norwegian facilities do not have a set of criteria in assessing cleaning, disinfection, and rinsing strategies, unlike in the majority of North American sites; peracetic acid and hydrogen peroxide are the most commonly used surface disinfectants in Norwegian RAS sites, whereas chlorine/sodium hypochlorite and quaternary ammonium compounds are most common in North America; and, there is significant variability between Norwegian and North American RAS producers regarding the specific practices for disinfecting tanks and pipelines, floors, and ancillary equipment, especially concerning the actual disinfectant used, and pre- and post-disinfection application and contact time, among other things.Despite the limited number of sites surveyed, the range of respondents included those from all major salmon companies using RAS technologies. Therefore, it is likely that the survey data obtained provided a representative picture of how the current industry approaches facility disinfection. Overall, the information gained through this survey can be valuable not only for RAS producers, but also for policymakers and governmental entities, and can be used as foundational knowledge in benchmarking disinfection strategies. This, in turn, can support the eventual establishment of universal guidelines, particularly for producers utilizing RAS technologies.Also read: A successful Case of Split Pond Recirculation Aquaculture System (SP-RAS) for Snakehead Fish Farming in Andhra Pradesh of IndiaFor a more comprehensive summary of the disinfection survey results, the full peer-reviewed article is available as an open access publication and can be downloaded, free-of-charge, from the Aquaculture (Elsevier) website. The title of the article is: “Survey findings of disinfection strategies at selected Norwegian and North American land-based RAS facilities: A comparative insight” (Aquaculture, Volume 532). This study received funding from the Research Council of Norway and from the Centre for Closed-Containment Aquaculture (CtrlAQUA) (Project No.: 237856/O30).The authors wish to extend their sincere gratitude to all survey participants for their time and effort in completing and returning the survey. We hope that our findings represent a first step towards the establishment of efficacious best management practices and standard operating procedures for disinfection approaches in salmonid RAS facilities, regardless of geographic location. Source: Hatchery International ...
New Controls Simplify Bio Lighting System
Teknologi

New Controls Simplify Bio Lighting System

UK-based Tropical Marine Centre, also known as TMC Commercial, reports that it has made significant improvements to its optimised low-energy lighting for aquaculture. The system provides biologically optimised light by matching the spectrum, intensity and photoperiod to the known photic requirements of different commercially important species. The system was first described in HI last year (see The beauty of blue – July/August 2014)Giles Westcott from TMC’s lighting division reports, “We currently have active trials running in the United Kingdom, France, The Netherlands, Greece, Spain and Portugal, covering multiple species including sea bass, sea bream, turbot, sole and the lump sucker being cultured to control sea lice in salmon cages. For us, the most important thing is that five out of the six commercial companies involved have either extended or committed to extend the use of our lighting in their facilities.”Also read: Lighting in Aquaculture FacilitiesAside from reductions in lighting-related energy costs of up to 60%, TMS says that trial sites are reporting biological gains such as increased larvae size, faster weight gain, more homogenous distribution and reductions in stress-related mortalities.“Customers also reacted positively to the rugged, modular format of the lighting units, a factor that made retro-fitting quick and easy, with minimal production down-time,” adds Westcott.The new BioLumen Control system provides a simple user interface, where intensity, day-length and L/D transition can be set to the precise requirements of the culture species at each stage of development.Also read: Power Move: Japanese Energy Firm Getting in on RAS ShrimpThe system also includes the ability run multiple protocols at the same time. These can be either a fixed L/D cycle or set to match relative output to track the seasonal photic profile of any given latitude/longitude. One unique feature, says Westcott, is that it not only tracks seasonal shift in day-length, but can be configured to track the relative change in midday intensity between summer solstice and winter solstice, something that could prove useful in entraining broodstock cycles. Source: Hatchery International ...
Lighting in Aquaculture Facilities
Teknologi

Lighting in Aquaculture Facilities

Lighting is generally an afterthought in many facilities but it can make a pretty important impact on production.When I was first starting out in the red drum hatchery, we were just using standard fluorescent lighting. While we were successful, it’s possible we could have capitalized on better lighting options. Of course, I was doing this work in the mid to late 90’s before the availability of more efficient fixtures, so I will use that as my excuse. Over the last decade, we have seen several significant advancements in lighting. One of the most prevalent is the LED (Light Emitting Diode) technology. LED’s allow a greater variety of spectrumor color-specific lighting and offer a completely new range of lighting options previously not possible with conventional lighting technologies. This column will discuss the different types of lighting and controllers that are available for use in our industry. From traditional fluorescent lighting to the more efficient LED, there are several options that are available.Before delving into the types of lighting, it is important to review lighting in general. Lighting can be species and life phase specific. For example, brood stock lighting, in my experience, has been more about the time that the light is on than wavelength and intensity. Larval rearing has been more specific to intensity and in some research, it has been shown that wavelength can also affect fish growth.One of the bigger hurdles in lighting is finding lights that are UL approved in wet conditions. While not every facility requires UL listings, it is common enough that it narrows the available fixtures significantly.In general, the testing mechanisms existing for many lighting options are such that it is hard to guarantee specific “colors” so the most common description for a lamp is its Kelvin output. According to Reef Brite, a lighting manufacturer, the word temperature is important when discussing Kelvin because it refers to the temperature of a theoretical black body or to an emitting body of light in degrees Celsius when heated to a given temperature. Most of us are familiar with an incandescent lamp which has a filament (theoretical black body) made of tungsten. As current begins to pass through the filament it will begin to heat up. As the number of electrons (current) passing through the filament increases it will start to glow, producing light. If you were to measure the temperature of the filament and note the color it is glowing, you now have a fundamental idea of how color temperature (Kelvin) works.Also read: Technology Solutions for The Aquaculture SectorLighting can be species and life phase specific. For example, brood stock lighting, in my experience, has been more about the time that the light is on than wavelength and intensity. Larval rearing has been more specific to intensity and in some research, it has been shown that wavelength can also affect fish growth.We will cover the three most common types of lighting in this column. While there are other options available, it seems prudent to go with the more common options.Fluorescent LightsThese are the most economical lights to purchase on the market, and they come in a variety of styles and sizes as well as wavelengths. Fluorescent lights are available virtually anywhere and can be installed quickly with standard outlets and switches. The most common is the T-5 lamp which is the newer version that replaced the T-8 and T-12 lamps. Fixtures for these are also available pretty much anywhere. Specific Daylight spectrum lamps are commonly available as well. Several brands of these lights allow the user to daisy chain the fixtures for easy installation.One of the bigger hurdles in lighting is finding lights that are UL approved in wet conditions. While not every facility requires UL listings, it is common enough that it narrows the available fixtures significantly.This style of light is relatively efficient but has specific disposal requirements since they contain a small amount of mercury. It also can lose its wavelength over time so if the wavelength is critical, plan accordingly. Each manufacturer has a recommended replacement timeframe.Metal HalideLights These have been in use for many years. They were, and to a certain extent still are, the most popular for reliable wavelength and longevity. This style lamp often requires a pretty heavy ballast as well as quite a bit of energy. Luckily new electronic ballasts are coming into the market, which are lighter and smaller.Also read: Power Move: Japanese Energy Firm Getting in on RAS ShrimpMetal halide lamps work by passing an electric arc through vaporized mercury and metal halides. The intensity of the light is determined by the mix of the metal halides that are present in the lamp itself. There is a start-up time required which can take several minutes for them to be fully lit. As an example, traditional sport field and parking lot lights are metal halide lamps.Metal halides are most often used in applications where plant or algae growth is needed. They are also used in coral and bivalve farms. They have a significant initial investment as well as high operating costs, so analysis needs to be done on the application to make sure they are appropriate.LED LightsAnd now on to the latest and greatest fixture in the market. As with all the latest and greatest gadgetry, one must be very careful not to be taken down the garden path of gimmicks. The race for better LED technology has been on for over a decade and we are finally seeing some of the low-quality materials fall out of the market.LED stands for Light Emitting Diode. That said, this technology allows the manufacturer to control the wavelength of the fixture by choosing specific diodes. Really efficient and effective LED lamps can be extremely expensive. This is especially true if UL listing and large fixture sizes are required.Also read: Farming Fish in the SkyOne of the biggest advantages to LED technology is that it is more focused because the light is only shone in one direction. While the fluorescent and metal halide lamps produce light along the entire filament, which is round, light from these sources that is initially directed away from the target must be reflected down.The more commercial the fixture, the more expensive and more testing the unit has undergone to prove the technology. The good news is that in most aquaculture applications the specific wavelength is not as critical as it can be in other applications.At the end of the day, the best possible option is to look at all the options and decide what is most effective for the species and system that needs the lighting.What works for some facilities may not work in others, so this is one of the items that requires a lot of analysis. Sumber: Aquaculture Magazine ...
Technology Solutions for The Aquaculture Sector
Teknologi

Technology Solutions for The Aquaculture Sector

SMARTWATER PLANET, S.L. provides affordable technology solutions for water quality, health monitoring, zero waste & circular economy in the aquaculture sector.SMARTWATER PLANET is a relatively young company; however, it gathers the expertise of a multidisciplinary team, with more than 20 years of experience in the sector. What sector? Definitely, aquaculture!“At SMARTWATER PLANET we believe in an aquaculture sector with zero waste and circular economy circuits. We develop affordable technology solutions within an eco-aware and environment integrative framework. Our goal is to contribute to efficient production, water quality monitoring & management solutions, fish health monitoring, and effluent re-utilisation,” says CEO Enrique Amaré.The company’s main office is located in Madrid, with agents also based in Northern Spain. The main output of SMARTWATER PLANET are technology products and an array of applications derived from them.Also read: Aquaculture Technology Provider UMITRON Launches Fish Appetite Index (FAI), The World's First Real-Time Ocean-Based Fish Appetite Detection SystemTechnology solutions for the aquaculture sectorMEDUSA is an autonomous, rechargeable plug and play multifunctional IoT device continuously measuring real-time water quality, physicochemical parameters. “MEDUSA is a small — 20cm diameter — floating platform that can be deployed in a pond or tank, or any other kind of body of water, collecting real-time water quality data, and sending them to SMARTWATER’s cloud servers for data management and machine learning model optimisation. There are options for 85 different parameters, with a current configuration of five sensors in the platform (O2, Temperature, Conductivity, NH4 and pH),” says Amaré.SmartWater has also developed an IT suite for optimising fish farm production, sustainability and business potential, which combines the advanced sensors of MEDUSA, with a business and production management system (called SMARTWATER CLOUD) enhanced with machine learning capabilities (AI-based software based on smart fish models, and active learning), developed in close cooperation with farmers to ensure user’s requirements are met.EU projects in aquaculture“We are involved in a number of EU projects, developing and applying our technology to data management, benchmarking, AI and prediction tools,” Carlos Mazorra, Director of Innovation notes. “Our R&D is always aiming at putting new products or applications in the market, to offer new solutions to current and persistent production problems, often with a disruptive approach. Take PathoGelTrap, for instance,” he adds.In this EU project, PathoGelTrap, SMARTWATER PLANET coordinates and joins efforts with the scientific expertise of CSIC (Consejo Superior de Investigaciones Científicas, Spain), IZSV (Istituto Zooprofilattico Sperimentalle del Venezie, Italy), IFPAN (Instytut Fiziky Polskiej Academi Nauk, Poland), UCD (University College Dublin, Ireland), and VerTech (France). PathoGelTrap is founded under the European Framework Programme for R&I, Horizon 2020. Through a pioneering technology based on bio selective hydrogel-forming proteins, the idea is to transform the future of aquaculture with a disruptive pathogen–trapping technology capable of targeting and removing specific pathogens from water in fish farms, without affecting the fish and avoiding the use of antibiotics.Also read: Shrimp Aquaculture and Competitive Exclusion Of PathogensPreventing pathogen infections in intensive aquacultureStrategies followed to control and prevent pathogen infections in intensive aquaculture have important drawbacks, turning the future sustainability of global fish production into a great challenge. Sustainable solutions for preventing and controlling pathogen hazards are used in organic aquaculture (quarantine, lower fish density, better health management, etc.). However, these solutions are difficult to transfer to intensive farming. In this context, new models to control and prevent pathogen infections are urgently needed for ensuring the longevity and sustainability of the so-called “Blue Revolution”.“PathoGelTrap’s envisioned technology proposes a new fish health management model that allows prevention and control of infectious diseases by selectively blocking the pathogens directly in the water, complementing and surpassing the current technological paradigm that focuses on disease prevention through the direct action over the fish by vaccines or broad-spectrum antibiotics which could affect the environment microbiota. Besides, this technology opens the door for a disrupting way for future pathogenic disease control,” argues Mazorra.The application of LLPS is a very innovative field, and the project will integrate computer-based (in silico), in vitro and in vivo methods to design and test PathoGelTrap technology to cover the knowledge gap in self-assembling LLPS biomaterials engineering. PathoGelTrap technology targets two types of pathogens, one virus and one bacterium, to cover a spectrum of pathogens and reduce the risk.“We will offer two formulations: PathoGelTrap Liquid (flocculant) and PathoGelTrap Filter (gel). These two strategies allow us broad flexibility: PathoGelTrap Liquid could be used in closed farms while the PathoGelTrap Filter could be used also in open farms, in the form of mobile filters,” declares Enrique Amaré.Also read: Solutions to Control Blue-Green Algae in Grow-out PondsAffordable and intelligent technology solutionsThe company is also designing a trout farm near Segovia in central Spain. It will combine several technologies in a holistic approach to procure a low water footprint such as recirculation modules, hydro and geothermal resources, water re-utilisation for vegetable crop production, and the production of organic-certified trout. The farm will be partially supplying trout to a fishery, also part of the business plan, and eventually, organic-certified eyed eggs.The company is certainly projecting internationally, as the aquaculture market is a global one. “We have recently won a competitive bid for a contract in Italy, on an intelligent solution for the monitorisation and management of the migration of fisheries populations in a natural lagoon,” Enrique Amaré points out.“SMARTWATER PLANET aims to deliver accessible, affordable and intelligent technology solutions,” says Amaré; “We are ready to lead the leap from personal-experience traditional Aquaculture to AI-supported eco-friendly and economically efficient fish farming. Every aspect of it, from efficient production to water quality management, fish health monitoring, and effluent re-utilisation, is within our interests. Source: Open Access Government ...
Power Move: Japanese Energy Firm Getting in on RAS Shrimp
Teknologi

Power Move: Japanese Energy Firm Getting in on RAS Shrimp

Japan, a nation with a traditionally high seafood consumption rates, sees land-based aquaculture as a way to secure supplies of popular fish species – including shrimp – in an environmentally friendly manner. Now, some unexpected Japanese firms are entering recirculating aquaculture systems (RAS) production, continuing a countrywide trend.Last October, Kansai Electric Power (KEPCO) announced plans to build an RAS facility, starting in January 2021, in Iwata City, Shizuoka Prefecture, near Tokyo.KEPCO aims to farm Pacific whiteleg shrimp starting in March 2022 under the name Kaiko Yukinoya Co. Ltd. The new company will use a system called the Indoor Shrimp Production System (ISPS), jointly developed by aquaculture engineering firm International Mariculture Technology Engineering Inc. (IMTE) and the Japan International Research Center for Agricultural Sciences (JIRCAS).ISPS consists of an automatic wave-generating apparatus and a vertical pump that conserves energy. A robotic cleaner automatically removes solid debris from the bottom of the tanks while an oxygen-generating system can be adjusted according to biomass. The system also uses low-salinity, high-hardness water and offers a quasi-natural environment with artificial seaweed that prevents cannibalism by giving newly molted shrimp a place to hide.According to Setsuo Nohara, executive advisor at IMTE, Japan’s annual shrimp production derives almost entirely from the Kuruma prawn (Marsupenaeus japonicus) and is only 1,500 tons a year (IMTE makes a small contribution to the domestic market with whiteleg shrimp Litopeneaus vannamei produced at its plant in Myoko City, Niigata Prefecture – see photos).“We are planning on production levels of 80 tons a year, which amounts to 5 percent of Japan’s current total aquaculture production of shrimp,” Nohara told the Advocate. “However, Japan currently consumes nearly 250,000 tons of shrimp per year, and this supply depends almost entirely on imports of frozen shrimp from overseas. In this way, it may be calculated that Japan’s self-sufficiency in shrimp is only 5 percent at present. Therefore, we expect the new plant to make a significant contribution to Japan’s markets.”Harvesting shrimp at the IMTE whiteleg shrimp plant in Myoko City, Niigata Prefecture.“We’re delighted that KEPCO, one of Japan’s foremost companies, has adopted our technology for their first entry into the food production business,” he continued. “We’re confident that Kaiko Yukinoya will be an example of a vibrant shrimp culture industry in Japan that is sustainable from a business standpoint and compatible with today’s needs to ensure environmentally friendly aquaculture production. The new plant will help us achieve an economy of scale in production and we hope that we can also offer it outside Japan to do our share in assisting in the industry.”IMTE and JIRCAS have been developing technology for the agriculture, forestry and fisheries sectors for 20 years. IMTE has been producing shrimp commercially for more than 12 years, while JIRCAS is a national institute aiming to provide a stable supply of agricultural, forestry and fishery products and resources through research and technology development. Together, they’ve been introducing RAS shrimp culture based on the ISPS concept to countries such as Vietnam and India through consulting opportunities.Kaiko Yukinoya Co. Ltd arrives in Japan amidst an increasing move in the country toward RAS. The trend is driven by the technology’s promise to limit negative environmental impacts and tighten biosecurity. But questions remain as to whether RAS can be profitable, given the high amount of equipment and water treatment facilities that are required.“Initial investment costs are very high, but Iwata City has helped us to clear this problem by offering generous measures to build a shrimp plant in their city as Kaiko Yukinoya is established,” said Nohara and Dr. Marcy Wilder, senior research scientist at JIRCAS. “Meanwhile, building a very large-scale shrimp plant will sufficiently lower unit costs for such things as labor, electricity and feed, thus realizing a true economy of scale. The system also has virtually no environmental impact. In fact, at the conclusion of a production cycle, since the water we use is very low salinity and sufficiently clean according to Japanese sewerage standards, it can be disposed of easily and according to standard methods.”The economic benefits of land-based farming in Japan are also worth noting, according to Dr. Junpei Shinji of the University of Tokyo. He is a co-author of a bio-economic analysis into Japan’s closed shrimp farming that was recently featured in the Advocate.“Such benefits depend on the ability to improve and artificially control rearing conditions,” he said. “But unforeseen problems may occur. In our analysis, we predicted that there may be unidentified but critical factors that increase mortality, possibly induced by the cumulative death of individuals in the closed system. One key point that’s necessary for efficient economic management is managing shrimp populations within the system. The timing of harvests may also be an easy solution to implement.”Nohara and Wilder have high hopes that their ISPS technology could set the stage for more RAS-related enterprises in Japan. At the same time, both have found that many Japanese consumers have a high awareness of what constitutes seafood quality and are keen to learn what species of shrimp or fish they are eating, where it comes from and how it’s produced. Prominent features in Japanese media have made IMTE and JIRCAS’s work more transparent, with consumers interested to learn that shrimp can be produced in an area like Myoko – a cold, mountainous region that’s far away from the ocean.IMTE-produced Myoko Snow Shrimp, vacuum-packed for Japanese retail outlets.Does this mean more land-based farming in Japan?“We believe there is huge potential for RAS to take off in this country,” said Wilder. “But it must be sustainable. Not only must the technology work but it must also be economically viable. If the proprietor of an enterprise using RAS technology goes out of business, that technology is not sustainable. We also think of the word sustainable in the usual way – being good for the environment and society. For sustainable shrimp production, both conditions must be met.”High demand for seafood throughout Japan presents a favorable outlook for companies like KEPCO seeking to enter the aquaculture sector, Wilder said.“While a certain amount of conventional aquaculture takes place, land available for use in RAS systems is subject to certain limitations from both legal and suitability perspectives,” she said. “Nevertheless, there is great potential to convert unused farmland into sites for RAS enterprises, and many people have considered utilizing abandoned public facilities such as school buildings in sparsely populated areas. In this way, the relevant sections of the Japanese government are giving consideration to measures to further promote RAS in this country. We think that the time is right for land-based aquaculture production here.” Source: Global Aquaculture Alliance ...
Farming Fish in the Sky
Teknologi

Farming Fish in the Sky

Sometime soon, Apollo Aquaculture Group will have one of the world’s largest vertical fish farms up and running in Singapore. Though construction has been delayed by COVID-19, the farm, once complete, will scale eight stories. Crucially, says the company, it won’t only be the farm’s height that sets it apart from the competition.The high-tech facility will produce up to 3,000 tonnes of hybridized grouper, coral trout, and shrimp each year—with an efficiency, measured in fish per tonne of water, that is six times higher than established aquaculture operations in the Southeast Asian city-state, says spokesperson Crono Lee.In doing so, the company hopes to become a major contributor to an ambitious plan to boost the food security of the small island city-state, which currently imports 90 percent of its food.According to Ethan Chong Yih Tng, an associate professor at the Singapore Institute of Technology who is not involved with the company, this stacking of fish farms is one of the key initiatives that geographically small Singapore is looking at to achieve its ambitious “30 by 30” target for food security—to produce 30 percent of its nutritional needs locally by 2030.Also read: Benefits of Recirculating Aquaculture SystemsFounded in 1969, Apollo isn’t a new arrival to aquaculture in Singapore. Since the 1970s, it has been breeding ornamental fish across its 300-odd farms in the region. But when Eric Ng took over the family business in 2009, he was quick to diversify into producing marine fish as food, borrowing methods from operations in Germany, Japan, and Israel, says Lee. The outcome was a three-story farm in Lim Chu Kang, a rare green spot on the outskirts of Singapore. That aquaculture facility has been in operation for nearly a decade.Each level of the Lim Chu Kang operation has two 135-square-meter tanks supplied with seawater by a system that filters, purifies, monitors, and recirculates water through the farm. As a result, only around five percent of the water needs to be replaced when contaminated by effluent from the fish—though Lee says the goal at both the new and existing facilities is to reduce that to zero using aquatic plants that clean and treat water naturally. That’s in contrast to significant levels of waste at Singapore’s traditional onshore pond farms, where farmers routinely clean out and replace entire tanks.In nearly 10 years of operating the Lim Chu Kang farm, which produces up to 200 tonnes of fish per year, the company has built up meticulous data sets on how to increase yields, says Lee—data they will apply to the new, larger facility.“We understand the amount of water required, the condition of the water, and the amount of feed—measured down to a single gram per cubic meter of water. As a result, we’re able to produce fish in a much shorter time frame, at the right size for the market,” says Lee.Also read: Shrimp Farmers in Ecuador Tap An App To Seal A Better DealThe decision to build this system up, rather than out, is a response to the lack of space in the Asian city-state. “We’re a very small country, and it’s very difficult to secure land,” says Lee. “So rather than building sideways, and expanding horizontally, why not expand vertically?”Ever larger onshore fish farms is not the only approach the city-state is using to reach its 30 by 30 goal, however. In late 2019, for example, an offshore fish farm opened about five kilometers off Singapore’s Changi Point Ferry Terminal. Using a closed-containment system, it produces around 166 tonnes of barramundi, red snapper, and grouper each year across four tanks. The system “effectively isolates the fishes from the seawater when the quality of the surrounding water turns poor,” says Yih Tng. The self-contained system offers the control of Apollo’s vertical farm without the initial outlay on expensive land, or the high power costs.Though Lee insists Apollo’s new eight-story farm will be economically competitive with traditional fish farms, high operating costs remain one of the primary reasons that commercial vertical closed loop fish farms remain limited globally.In the United States, the majority of farms represented by the Recirculating Farms Coalition are outdoors, and much smaller than the Singapore operation, says founder and executive director Marianne Cufone. “That means we’re not as dependent on artificial inputs, such as temperature controls,” she explains.Also read: Optimisation of Feeding Strategies at A Fish Farm Through Mathematical Modelling“A lot of the larger systems sacrifice some of the natural benefits of [recirculating] systems in that they use a lot of energy for cooling, for heating, and for the circulating pumps. That’s not to say these outweigh the benefits, but a smaller, well-designed system can be extremely eco-efficient versus some of the larger-scale ones.”The increased operational costs of a large facility translate to the price of the product: a 150-gram pack of Apollo’s ready-to-cook hybridized grouper fillet will set a customer back around US $12—roughly double the price of a frozen red grouper on sale at Singapore’s biggest grocer, Fair Price.However, Cufone adds, large enclosed fish farms are becoming more prevalent in North America and the rest of the world. Few places is that growth more urgent than in Singapore—a fact only exacerbated by the spread of COVID-19.“COVID-19 has exploded the awareness of [food insecurity] exponentially to local Singaporeans, and right now there’s a big shift in thinking toward local production,” says Lee. A shift that Apollo plans to take full advantage of. Source: Hakai Magazine ...
Tekan Biaya Produksi dengan 10 langkah Sistem Tambak Nursery (Part 2)
Teknologi

Tekan Biaya Produksi dengan 10 langkah Sistem Tambak Nursery (Part 2)

Penggunaan Imunostimulan dalam BudidayaPopulasi udang yang tinggi dalam sistem nurseri dapat menyebabkan stress pada udang. Pada kondisi demikian, sangat pentinguntuk memberikan zat peningkat kekebalan tubuh seperti vitamin C, E, B, mineral dan karotenoid untuk udang. Hal ini bisa dilakukan dengan aplikasi Sano RTOP-S pada pakan udang sebelum diumpankan dengan dosis 10 g/kg pakan. Pemberian imunistimulan ini dapat dilakukan bersamaan dengan pencampuran probiotik pada pakan.Baca juga: Tekan Biaya Produksi dengan 10 langkah Sistem Tambak Nursery (Part 1)Aplikasi Disinfektan dalam Sistem NurseriSebelum tebar benur, sangat penting untuk membersihkan, mengeringkan dan desinfeksi seluruh permukaan kolam dan peralatan tambak. Untuk menjamin pembersihan seluruh biofilm dan spora bakteria, digunakan 1% larutan SanocareRPUR disemprotkan ke semua permukaan kolam dan peralatan kolam. Desinfektan juga digunakan untuk perlakuan awal air dalam kolam. Setelah kolam diisi dengan air, ditambahkan PUR ke dalam kolam sehingga konsentrasi PUR dalam kolam sebanyak 1 mg/mL (1 ppm).Perlakuan ini akan menurunkan konsentrasi bakteri patogen dalam kolam. Perlu diketahui bahwa pemberian PUR merupakan langkah disinfektasi terakhir tepat sebelum pemberian  perlakuan probiotik (probiotik untuk air budidaya, molase dan aplikasi pakan pertama) sehingga dapat menginduksi pembentukan biofilm probiotik seimbang dan bermanfaat bagi lingkungan budidaya.Baca juga: Aplikasi Teknologi Ini untuk Genjot Produktivitas Perikanan Budi DayaPengkondisian air tambakTahap pengkondisian/penyiapan air dilakukan dengan pencampuran bakteri menguntungkan (probiotik) dengan air yang dirancang untuk mengkolonisasi permukaan/biofilm tambak dan lingkungan air secara keseluruhan. Hal ini juga juga menunjang degradasi dari limbah organic (cangkang/kulit udang, padatan dan bahan yang lain). Dosis aplikasi untuk pengkondisian air tambak ditetapkan untuk menyeimbangkan ekologi mikroba sehingga konsentrasi vibrio diusahakan tertekan pada level aman yaitu pada 500 CFU/mL.Perlu diperhatikan juga kemungkinan kondisi terburuk dimana waktu multiplikasi vibrio yang hanya 20 menit dibandingkan dengan probiotik terutama bacillus yang butuh waktu 6 jam untuk multiplikasi. Dengan memperhitungkan semua kondisi diatas, pemberian probiotik untuk air tambak dilakukan agar menghasilkan konsentrasi probiotik sebanyak 10.000 CFU/mL air tambak.Untuk pengkondisian air ini digunakan campuran probiotik: SanolifeRPRO-W dengan konsentrasi 50 milyar campuran bacillus/gr. Dengan konsentrasi tersebut dosis yang digunakan adalah hanya 0.2 g/m3 air. Aplikasi pemberian probiotik pertama dilakukan 6 jam setelah desinfektasi air tambak dengan dosis 0.4 gr/m3 air tambak (konsentrasi bakteri di air tambak  20.000 CFU/mL). Penambahan PRO-W dilakukan 2 kali setiap pekan. Pemberian probiotik diiringi dengan penambahan molase yang disesuaikan dengan waktu pertukaran air tambak.Baca juga: Mengenal Biofilm dalam Tambak UdangMengurangi Pergantian AirProtokol pergantian air ini ditujukan sebagai pendekatan holistik terhadap pengendalian nitrogen secara multitropik, yaitu melalui kontrol populasi fitoplankton (dengan menggunakan peneduh); dan juga dibantu oleh peran pencernaan nitrogen dari probiotik (peran bakteri heterotrofik) bersama dengan peningkatan proses nitrifikasi autotrofik yang terjadi secara alami (peran bakteri autotrofik). Pergantian air dilakukan dalam protokol sehubungan dengan akumulasi nitrogen dalam air budidaya.Protokol memberikan prioritas pada biosekuriti di atas konsentrasi nitrogen dalam air budidaya. Untuk alasan ini, batas konsentrasi maksimal yang bisa diterima untuk NH3-N dan NO2-N ditetapkan maksimal sebesar 5 mgN/L. Pada kondisi normal, telah berulang kali dibuktikan bahwa konsentrasi NH3-N dan NO2-N sebesar 5 mgN/L tidak berdampak negative terhadap kondisi kesehatan udang secara keseluruhan.Pengelolaan kadar nitrogen yang lebih rendah akan membutuhkan volume pergantian air yang lebih tinggi. Saat ini dalam hal manajemen resiko,  bisa dilihat  bahwa resiko kontaminasi pathogen di tambak, yang disebabkan oleh peningkatan volume pergantian air, menjadi terlalu tinggi bila dibandingkan dengan resiko yang yang ditimbulkan oleh tingkat konsentrasi nitrogen dengan batas maksimal yang ditentukan di atas.Sumber: Agribiz Network ...
Tekan Biaya Produksi dengan 10 langkah Sistem Tambak Nursery (Part 1)
Teknologi

Tekan Biaya Produksi dengan 10 langkah Sistem Tambak Nursery (Part 1)

Pendekatan sistem nurseri ini difokuskan pada manajemen resiko dan hasil yang konsisten. Konsistensi dan prediktabilitas hasil, bersamaan dengan pengurangan resiko kegagalan akan menjadi lebih besar lagi apabila dilakukan dengan protokol baku dan perbaikan sepanjang waktu.Secara umum, pemasangan penutup/peneduh di atas kolam tambak dan pengurangan pergantian air menhasilkan penurunan resiko kontaminasi secara drastis. Hal ini sangat meningkatkan prediktabilitas keberhasilan berkat naiknya konsistensi dalam proses budidaya. Secara sederhana kita bisa meringkas hal ini sebagai: Biosekuriti + Konsistensi = budidaya berkesinambungan.Penerapan sistem nurseri di lokasi tambak akan menurunkan investasi yang dibutuhkan untuk membuat penutup tambak. Hal ini juga bisa menjadi proses pembelajaran bagi petambak untuk mengelola budidaya mereka dalam kondisi pergantian air yang minimal.Pada saat yang sama, dengan pergantian air yang minimal selama proses nurseri berdampak pada berkurangnya biaya produksi secara umum bila dibandingkan dengan budidaya dengan tingkat pergantian air yang tinggi. Biaya yang lebih rendah dalam konsumsi daya listrik dan pemeliharaan alat, dapat menciptakan alokasi anggaran lain untuk memperoleh pakan kualitas super dan probiotik yang lebih berkualitas.Rentang waktu budidaya pada percobaan sistem nurseri adalah 30 hari. Durasi tahap nurseri pada percobaan ini ditentukan berdasarkan pada jumlah padat tebar. Metode ini mempertimbangkan dua kriteria penting, yaitu biomasa/bobot udang dan jumlah pemberian pakan.Secara garis besar, menurut Manuel Poulain, Project Manager (Shrimp Grow-out) INVE Aquaculture Thailand, protokol sisem nurseri diringkas menjadi 10 poin tindakan untuk mendapatkan pengendalian maksimal terhadap bahaya biosekuriti.Baca juga: Kecukupan Pakan pada BenurPadat Tebar BenurPada percobaan ini, protokol mempertimbangkan penggunaan 1 juta benur (ukuran PL10), dengan padat tebar 2 PL/liter dengan mempertimbangkan mortalitas awal sebesar 5% akibat stres karena pengiriman dan saat stock. Angka ini adalah jumlah sebenarnya benur yang ditebar, termasuk setelah ditambah dengan “bonus” benur yang biasanya diberikan oleh hatchery.Target kelangsungan hidup nurseri secara keseluruhan yang ditetapkan adalah 80% dengan tingkat mortalitas kronis selama molting akibat kanibalisme. Kenyataannya, berdasarkan pengamatan, tingkat kelangsunganhidup ternyata lebih tinggi, yaitu 90%. Untuk menghindari pemberian pakan berlebih (overfeeding), sebaiknya dilakukan pemberian pakan dengan acuan kelangsungan hidup sedikit di bawah standar.Total jumlah udang yang ditebar pada percobaan ini sudah diperhitungkan masih dalam tahap aman sampai masa akhir tahap nurseri, yaitu maksimum pada angka biomasa udang sebesar 2 kg/m3 dan total maksimum pemberian pakan 100 gr/m3.Patokannya, perbandingan maksimum antara total biomassa udang dan total pakan yang diberikan adalah 3 kg berbanding 150 gram untuk setiap m3 air tambak per hari. Menurut Manuel Polain, angka tersebut menjadi batas maksimum untuk mempertahankan tingkat resiko kegagalan yang masih dapat diterima. Sebaliknya, bila total biomas udang lebih dari 3 kg untuk setiap m3 air, dan pemberian pakan udang perhari lebih dari 150 gr per m3 air kolam, risiko akan menjadi lebih tinggi karena keterbatasan oksigen terlarut dalam air, ungkap Manuel Polain.Bobot Biomassa UdangPertumbuhan udang, terutama tergantung pada kualitas benurnya, genetis dan efisiensi pakan.  Target pertumbuhan harus disesuaikan dengan kondisi benur dan efisiensi pakan yang digunakan. Selama percobaan, pengambilan sampel udang dilakukan setiap 3 hari, minimal 100 udang ditimbang secara massal untuk menentukan berat rata-ratanya.Pengamatan visual didasarkan pada warna, kekerasan cangkang, tingkat kepenuhan saluran pencernaan (oleh pakan) dan variasi ukuran tubuh udang secara keseluruhan. Aspek yang terakhir sangat penting untuk menentukan apakah udang mendapat pakan dengan benar. Berat udang yang diamati akan dibandingkan dengan asumsi pertumbuhan baku yang ada dalam protokol, dan pemberikan pakan disesuaikan dengan menggunakan baku pertumbuhan tersebut.Baca juga: Mengukur Kualitas Benur UdangStandar Pemberian PakanTotal pemberian pakan perhari dihitung sesuai dengan laju pemberian pakan yang diasumsikan, bersamaan dengan kenaikan baku pemberian pakan selama masa budidaya. Beban pakan yang ditambahkan dalam kolam tetap menjadi faktor utama untuk mengendalikan kondisi lingkungan budidaya.Tidak dapat dipungkiri, sebagian besar pakan akan masuk ke dalam air tambak karena larut terbuang di air atau tidak dikonsumsi. Secara tidak langsungnya, hal tersebut karena pencernaan udang yang buruk. Kondisi demikian menyebabkan ekologi air tambak tidak mampu mengatasinya.Sebaliknya, jika pemberian pakan dikurangi secara drastis, hal ini akan mengakibatkan berkurangnya nutrisi bagi perkembangan organisme yang berperan dalam pengendalian kualitas air. Sehingga, faktor baku peningkatan pakan perhari merupakan kunci untuk menyeimbangkan lingkungan tambak, dimana nitrifikasi multitrofik dan konsentrasi bakteri berhubungan langsung dengan tingkat pemberian pakan.Pemberian MolasePada percobaan ini menggunakan 30 liter molase yang ditambahkan dalam tiga tahap. Molase ditambahkan setelah penambahan air untuk menunjang perkembangan bakteri heterotrofik (probiotik) yang bermanfaat. Hal ini sangat penting untuk membentuk “air coklat” (bacterial base) daripada air hijau (fitoplankton base).Diet Pakan yang DiperkayaPakan diperkaya dengan produk INVE: Sanor S-PAK, suplemen yang seimbang, digunakan untuk meningkatkan kesehatan udang. SanorS-PAK diberikan sebanyak 15% dari total pemberian pakan harian. S-PAK diberikan pada dua minggu pertama budidaya yang diberikan pada setiap pemberian pakan pertama di pagi hari.Aplikasi pemberian diet kualitas sangat tinggi ini akan meningkatkan system kekebalan tubuh dan kekuatan udang secara keseluruhan. Untuk alasan tersebut, S-PAK perlu juga diberikan pada 4 hari terakhir perioda nursery untuk meningkatkan sistem pertahanan tubuh udang dan mempersiapkan udang saat menghadapi stress lingkungan pada saat proses transfer dari kolam nurseri ke kolam pembesaran.Baca juga: 6 Ciri Benur Udang Vaname Berkualitas yang Wajib Diketahui PetambakPenggunaan Pakan dengan Campuran ProbiotikPenggunaan probiotik merupakan inti dari manajemen mikroba. Dasarnya, strategi kompetisi untuk menghambat pertumbuhan bakteri patogen dengan adanya bakteri menguntungkan yang berkompetisi dengan menguasai ruang dan pakan. Dengan demikian, ruang dan pakan menjadi terbatas untuk pertumbuhanbakteri oportunistik dan bakteri patogen.Prinsipnya, strategi ini bukan untuk menekan Vibrio sp. 100%, akan tetapi untuk menyeimbangkan konsentrasi bakteri tersebut dengan probiotik. Strategi ini bisa mengurangi risiko terjangkitnya wabah penyakit akibat kehadiran bakteri patogen tersebut. Pemberian pakan yang dicampur probiotik dilakukan berdasarkan pada perhitungan 200 cfu/gr pakan. Dosis penggunaan probiotik campur tangan dengan produk SanoliferPRO-2 dengan konsentrasi produk 20 milyar CFU/gr bakteri hidup adalah 10 gram PRO-2 dalam 1 kg pakan udang. Sumber: Agribiz Network ...
Ozone, How Do I Apply It?
Teknologi

Ozone, How Do I Apply It?

As a continuation of a previous column on ozonation, in this article we will cover different methods of applying ozone to a filtration system.The original column, titled Ozone – Go Zone or No Zone, was published in Aquaculture Magazine 45-2 (AprilMay 2019). In that column, the different methods of making ozone were discussed.What do we do with the ozone once it has been made? The possibilities are endless! The effectiveness of ozone correlates directly with the amount of ozone over a period of contact time, usually expressed as mg/L x CT. An example is 1mg/L for 2 minutes contact time. This column will discuss some of the most common options for ozone contact and injection.Diffusers in an Open Top TankWhen I first started seeing ozone applied, it was in Central America at several of the shrimp farms we were working with at the time.In most cases, the ozone was generated and applied directly to the incoming water basins via air diffusers. While this method will work, it also has a few considerations.The most important consideration is that the ozone is off-gassing directly to the atmosphere and generally in a semi-closed building. This presents both a health hazard and additional wear and tear on the building since ozone is extremely caustic.This is one of the most inexpensive ways to add ozone to a system is through diffusers, such as ultra-fine pore ceramic diffusers, glass bonded silica diffusers or other types.This is true only because the diffusers themselves are inexpensive. However, in terms of efficiency, this can be one of the least effective ways to add ozone to a system since the gas is no longer pressurized once it leaves the diffuser. This is not something that is recommended unless there are no other options, and the proper precautions are taken.From a health hazard point of view, the inhalation of ozone gas will cause irritation to the lungs and throat. It can exacerbate conditions such as asthma, COPD, and other lung-related illnesses.In high enough doses, it can cause death. Frankly, ozone released into the atmosphere is not something to take lightly since it can cause long term damage to anyone in contact with it.There are some ozone resistant materials which are recommended for use with ozone in the gaseous form. Most building materials are not on that list which means that any ozone gas released to atmosphere will corrode traditional building materials.Venturi with a Pressurized Contact TankThis is one of the most common ways that ozone is applied in filtrations systems.A venturi is generally an injection molded part that is a short tube with a tapering constriction in the center that causes an increase in the velocity of flow of water and a corresponding decrease in pressure which is used to create suction.The ozone source is attached to the suction fitting while the filtered water passes through.Once the ozone is injected into the piping, the water enters a pressurized tank where it mixes for the allotted contact time.In most applications, the contact time is set to 2 minutes. For a filtered flow rate of 500 gallons per minute, the contact vessel would be at least 1000 gallons.There are many options for the materials that are used to make these tanks including stainless steel, epoxy-coated steel, and fiberglass.Different manufacturers have customized the internal fittings for these tanks in the hopes that varying flow patterns will encourage better mixing.We have not seen any discernable differences between manufacturers contact tanks. It really is a function of dosage and contact time.These pressurized tanks are fitted with an off-gassing valve which allows the leftover gas to be removed from the system. Those off-gassing valves are plumbed to an ozone destruct to avoid sending ozone gas into the atmosphere.Venturi and Protein SkimmersMost, if not all, commercial protein skimmers use a venturi to introduce air and/or ozone.The concept of using ozone with protein skimmers was developed to help encourage more efficient micro flocculation.This only happens when very low levels of ozone are used (0.01mg/L). This dosage is not concentrated enough to disinfect.In rare cases, some users have turned their protein skimmers into contact tanks for disinfection which is not the most efficient.Venturi with a Speece ConeThis method is not as widely used but does have merit. It uses the venturi to introduce the ozone into the cone vessel.Speece cones are built based on a design developed by Dr. Richard Speece from Vanderbilt University.Basically, the inverted cone allows the velocity of the water to reduce while the undissolved gas rises.As the water travels downward, it shears the gas bubble which keeps the ozone in suspension. Since the entire reaction is done under pressure, supersaturation can occur which can reduce the contact time.These systems also do not require an off-gassing valve or ozone gas destruction as the entire volume of gas is dissolved into a solution.Speece cones are more commonly used for introducing oxygen but are also a good option to use with ozone. The best part is that the end product of ozone breaking down is oxygen so it can perform a dual purpose of disinfecting and oxygenating.These are only a few options for introducing ozone into a filtration system.Please reach out to an appropriate engineer or designer when adding ozone to any filtration system to avoid inefficiencies and dangerous situationsSource: Aquaculture Magz ...
Benefits of Recirculating Aquaculture Systems
Teknologi

Benefits of Recirculating Aquaculture Systems

Aquaponics provides a symbiotic relationship between plants and fish. One of the most efficient systems to use is a recirculating aquaculture system. This system works by using the water already in the system, purifying it, and reusing it continuously. The waste products produced, such as carbon dioxide, are removed or converted into non-toxic products and returned to the fish tanks. There are numerous benefits to using a recirculating aquaculture system.Recirculating Aquaculture Systems (RAS) are the best option for locations close to or in cities with access to electricity. In order to farm tropical fish in moderate or cold climates, it is necessary to use RAS technology. One significant advantage has to do with the spread of diseases.The lessened water use minimizes the likelihood that fish get diseases since pathogens from the outside are lowered. Water used in traditional farming is usually taken from the sea, a river, or a lake, which increases the risk of disease.Also Read: A successful Case of Split Pond Recirculation Aquaculture System (SP-RAS) for Snakehead Fish Farming in Andhra Pradesh of IndiaEnergy and water requirements are limited to a minimum when recirculating cultured water. Limited water use benefits production inside a fish farm. Traditional fish farming is dependent on external conditions like temperature and oxygen levels. These factors are limited in recirculating systems.Another advantage of the RAS system is related to water and its quality control. Since dissolved oxygen levels are maintained at optimal levels, fish can have reduced stress, less food waste, and higher growth.Recirculating aquaculture systems have certain advantages compared to other production systems. A few additional benefits of recirculating aquaculture systems are:- Fully controlled environment for the fish- Low water use- Efficient energy use- Efficient land use- Optimal feeding strategy- Easy grading and harvesting of fish- Full disease control- Year-round production- These are more environmentally compatible systems- Systems can be expandedDisadvantagesThe main disadvantage of this system is that it is more costly to start up and have higher operating costs.A high initial investment is needed for RAS technology as this technology requires a new production plant.RAS technology also has high energy requirements. In order to operate RAS, highly-trained staff is needed, which can also mean more time and money spent away from farming.Also read: Surge of Off-flavor Solutions for RAS ContinuesRAS also needs a constant power supply. If there is a power outage, backup electricity is necessary.The installation process is quite complex and requires a high degree of safety. This is an advanced production system consisting of numerous units and subsystems.ConclusionRecirculating aquaculture systems are efficient systems to use when dealing with aquaponics.A few benefits include efficient energy use and disease control. RAS technology is useful when it comes to predicting output and gaining a competitive edge.There are a few disadvantages to using the recirculating aquaculture system. These disadvantages include high startup costs and complex machinery. Despite this, RAS is an effective system to use in regard to efficient fish farming.Baca juga: Optimisation of Feeding Strategies at A Fish Farm Through Mathematical ModellingReef Industries’ products and solutionsAquaculture liners require a special material to offer the balance of properties necessary to meet those needs best.Reef Industries would like to introduce Permalon®, a nontoxic polyethylene membrane ideal for lining ponds, lagoons, tanks, raceways, or other facilities where water management is an investment.This alloyed aquaculture pond liner is engineered to resist punctures and tears to minimize water loss and land deterioration.Reef Industries’ liners are available in heavy-duty, internally reinforced constructions and are available in 20 mils and 30 mils thicknesses constructed to suit an array of environments.Permalon® liner materials are factory-fabricated up to an acre or more in size, minimizing the need for an expensive installation crew.Baca juga: Fish Back On The Menu with Oxair’s Yield Boosting TechnologyHowever, if you are in need of a custom-fabricated liner, Reef Industries’ capabilities also include three-dimensional shapes for box and container liners, raceway liners, and waterproofing/rehabilitating all manner of structural containers.In addition to aquaculture liners, Reef Industries offers greenhouse covers. Griffolyn® greenhouse coverings have been performance engineered to be highly resistant to tears and punctures with an exceptional ability to retain strength and flexibility in the most extreme environments.Due to their long-life expectancy, Griffolyn® materials provide significant long-term cost savings offering unmatched life expectancy in almost any environment.Griffolyn® covers are manufactured using a UV stabilizing additive to protect them from UV degradation and help them retain their original properties.The product’s high-strength reinforced construction helps safeguard against tears often associated with installation. Available for 80%, 20%, and 0% light transmission, Griffolyn® can be custom fabricated to meet your exact requirements.Source: Aquaculture Mag ...
Dosen UMM Gabungkan Solar Cell dan Biona dalam Budidaya Ikan
Teknologi

Dosen UMM Gabungkan Solar Cell dan Biona dalam Budidaya Ikan

Empat dosen Universitas Muhammadiyah Malang (UMM) melaksanakan Program Pengembangan Desa Mitra (PPDM) di Desa Parangrargo, Wagir, Kabupaten Malang. Mereka mencoba menggabungkan teknologi solar cell dan sistem biona dalam budidaya ikan.Kegiatan ini merupakan kerja sama antara UMM dengan Kementerian Riset dan Teknologi, Badan Riset dan Inovasi Nasional (Kemenristek-BRIN). Program ini diketuai oleh Prof Yus Mochamad Cholily dan tiga orang anggota lainnya yaitu Machmud Effendy, Riza Rahman Hakim, dan Beti Istanti Suwandayani. Para dosen UMM memberi pelatihan ke masyarakat terkait budidaya ikan lele menggunakan sistem biona.Baca juga: Aplikasi Teknologi Ini untuk Genjot Produktivitas Perikanan Budi DayaPerwakilan tim, Riza Rahman Hakim, mengatakan pemilihan sistem biona ini bertujuan agar kolam lele tidak memakan banyak lahan. Dia dan tim melihat potensi budidaya ikan lele sangat besar di Kota Malang. Namun tidak banyak yang berkecimpung di bidang ini."Selain itu, desa Parangargo juga memiliki beberapa lahan yang bisa dimanfaatkan dengan baik,” ucap dosen Fakultas Pertanian dan Peternakan, UMM ini.Dalam proses kegiatan, tim mengawalinya dengan memberi pelatihan terkait pembuatan kolam terpal bundar dan teknik budidaya sistem biona. Kemudian praktik lapangan yang dilakukan oleh masyarakat desa. Lalu para dosen akan melakukan pemantauan dan evaluasi terhadap hasil garapan para peserta. Terakhir, sosialisasi pemasaran produk ikan lele.Baca juga: UHO Akselerasi Pakan Ikan dengan Teknologi Penetas TelurMenurut Riza, sistem biona mengharuskan mesin aerator untuk terus nyala selama 24 jam. Hal ini sangat menguras biaya listrik. Karena hal tersebut, UMM memberikan bantuan solar cell kepada masyarakat agar bisa menekan biaya listrik.Adapun kegiatan pemberdayaan masyarakat ini telah diadakan sejak Juni 2020. Rencananya, akan dilanjutkan sampai tiga tahun ke depan. Program ini juga akan diperbaharui setiap tahun agar ada perkembangan yang berarti.Pada tahun pertama, pemberdayaan masyarakat akan berfokus pada budidaya ikan lele menggunakan sistem biona. Kemudian pada tahun kedua program akan berkembang pada pembuatan pakan ikan secara mandiri. Lalu di tahun ketiga, program ini akan fokus pada Integrasi budidaya ikan dan sayuran.Baca juga: Mengenal Jamu Ikan Buatan Guru Besar Unmul, Obat Berizin KKP Pertama dari 100 Persen Bahan AlamiRiza berharap pemberdayaan masyarakat ini dapat meningkatkan keterampilan masyarakat. Hal ini terutama di bidang pertanian dan peternakan. "Lebih-lebih bisa mengangkat perekonomian masyarakat di desa Parangargo,” katanya dalam keterangan pers yang diterima Republika, Ahad (17/1).Sumber: Republika ...
Aplikasi Teknologi Ini untuk Genjot Produktivitas Perikanan Budi Daya
Teknologi

Aplikasi Teknologi Ini untuk Genjot Produktivitas Perikanan Budi Daya

Sejumlah pihak meluncurkan kompetisi Indonesia Aquaculture Challenge Project untuk mendorong penggunaan teknologi di perikanan budidaya. Produktivitas dinilai masih rendah, namun penggunaan lahan cukup besar yang mendorong alih fungsi lahan hijau.Hal ini dibahas dalam webinar bertajuk “Mendukung Inovasi Teknologi dan Sertifikasi Untuk Meningkatkan Produktivitas Pembudidaya Skala Kecil” oleh AgResults bekerja sama dengan Yayasan WWF Indonesia dan Kementerian Kelautan dan Perikanan (KKP) pada Kamis (17/12/2020).Gemi Triastuti, Sekretaris Dirjen Perikanan Budidaya KKP mengatakan dalam budidaya berkelanjutan perlu inovasi mendorong pembenihan yang bersertifikasi dan produktivitas. Misalnya penggunaan teknologi aerator dan automatic feeder. KKP mendorong komitmen dan kerjasama multistakeholder perikanan budidaya. Program ini akan berjalan selama empat tahun di enam provinsi yakni Kalimantan Selatan, Jawa Barat, Jawa Tengah, Jawa Timur, Sulawesi Selatan, dan NTB.Coco Kokarkin seorang ahli akuakultur atau aquaculturist mengatakan aplikasi teknologi di pembudidaya skala kecil tak mudah. Dilihat dari RUU yang sedang dibahas, ada 3 kriteria usaha mikro bidang budidaya ini yakni modal usaha di bawah Rp1 milyar, penjualan di atas Rp2 milyar, dan luas lahan di bawah 2 hektar.Namun di lapangan, ada yang punya kolam sampai 12 hektar tapi mengaku petambak sederhana. Mereka mengandalkan aliran air saluran atau pasang surut, menggunakan banyak pupuk, dan mau meningkatkan produktivitas jika teknologinya murah.“Repotnya tak tertarik inovasi kecuali sudah yakin meningkatkan keuntungan, ini tantangan,” ujar Direktur Perbenihan pada Direktorat Jenderal Perikanan Budidaya KKP ini. Hasil panen rata-rata perikanan budidaya di atas 400 kg/ha/tahun. “Bila kena masalah dua kali berturut akan ditinggalkan,” imbuh Coco.Baca juga : UHO Akselerasi Pakan Ikan dengan Teknologi Penetas Telur Seorang pembudidaya udang memperlihatkan benur udang yang bakal ditebar di tambaknya di di Desa Tomoli Selatan, Kecamatan Toribulu, Parigimoutong, Sulawesi Tengah, Rabu (10/6/2020). Foto : KKP Peningkatan produktivitasIa mengatakan banyak yang mengaku petambak tradisional tapi ajaibnya menguasai lahan luas, ini termasuk boros lahan karena produktivitas rendah. “Harapannya, hasil ditingkatkan dan lahan tak produktif dihijaukan lagi,” sebutnya.Cara meningkatkan diantaranya dengan survival rate (SR) benih di 2 minggu pertama, benih harus bebas penyakit, ukuran lebih besar, tak ada predator, dan tersedia pakan lokal. Selain itu meningkatkan daya dukung ketersediaan oksigen di malam hari dan ketersediaan pakan buatan.Saat ini optimalisasi produktivitas ada beragam cara, misalnya teknologi tepat guna. Penambahan kincir menurutnya sejalan dengan penambahan hasil. Jika panen udang sekitar 120 kg, ditambah 1 kincir bisa menjadi 300 kg udang. Dari perhitungannya, penambahan untung sekitar Rp7,5 juta per siklus per kincir. “Kalau harga kincir dianggap mahal, hanya mau gratis, ini sesuatu yang harus dipertimbangkan,” ia memberi catatan.Solusi lain, bila biaya teknologi pembudidaya UMKM relatif tinggi maka target penerapan teknologi adalah dengan budi daya komoditas bernilai tinggi. Misal udang galah, ikan belida, kepiting, dan lainnya.Aplikasi teknologi di usaha budidaya selain meingkatkan produksi dan kepastian hasil, juga mengurangi human error. Menurutnya saat pandemi ini adalah masa yang tepat untuk mendorong penerapan teknologi dan standar budidaya untuk meningkatkan hasil dan devisa ekspor.Prediksi penerimaan teknologi ini dari hasil observasinya adalah pembudiadya tak tertarik, tak ada listrik, mahal, malas hitung produktivitas, atau pernah rugi tak ada uang untuk beli teknologi.Dalam situasi seperti itu, Coco menyarankan produsen mempertimbangkan pengelompokkan pembudidaya sehingga lebih hemat. Peralatan yang dioperasikan 1 phase, penggunaan genset kelompok, dan ada champion atau orang yang sudah berhasil. Selain itu, produsen aerator perlu kerjasama dengan autofeeder.Baca juga : Usia 39 Tahun, Esti Jadi Profesor Termuda di Unmul, Ciptakan 4 Produk Obat Ikan dari Tanaman Lokal Kaltim Tambak dengan teknologi budi daya super intensif (BRPBAP3) Maros, Sulawesi Selatan. Foto : BRPBAP3 KKP Inovasi TeknologiSedangkan Arief Arianto, Perekayasa Madya Teknologi Pertanian dari Badan Pengkajian dan Pengaplikasian Teknologi (BPPT) menjelaskan tantangan Indonesia dalam industri budidaya ini cikup banyak. Seperti arus informasi, sumberdaya terbatas, perdagangan bebas, dan ledakan penduduk. “Kalau tak mampu berinovasi menghadapi tekanan lingkungan, akan terlindas jaman,” ingatnya.Isu global pun berpengaruh, misalnya pemanasan global menyebabkan kekacauan musim, degradasi lingkungan, dan pertambahan penduduk membuat pertambahan permintaan pangan. Karena itu perlu teknologi adaptif perubahan iklim, dan perbaikan produksi untuk proyeksi kecukupan pangan.Di lapangan, budidaya produk perikanan saat ini masih dibayangi cemaran zat kimia, kerusakan lingkungan perairan, kekeruhan, residu limbah pertanian dan lainnya. Di sisi lain ada peningkatan permintaan. Karena itu perlu teknologi yang tepat, ramah lingkungan, menggenjot produktivitas, dan ramah lingkungan.Teknologi budi daya ini meliputi pemantauan kimia (pH, oksigen terlarut, amonia, CO2), fisika (suhu, kecerahan, warna), dan biologi (plankton dan bakteri, kuantitas, dan lainnya).Akurasi pemberian pakan dan air masuk keluar makin dibutuhkan untuk menghemat sumber daya alam yang terbatas. Misalnya auotofish feeder dengan teknologi digital bisa beri pakan ikan atau komoditas lain secara berkala.Aerator bertenaga matahari juga makin jadi pilihan, mengurangi pemakaian genset atau listrik. Alat ini dikombinasikan teknologi digital. “Beberapa inovator mengembangkan integrasi sistem aerasi, autofish feeder, suplai air, sehingga bisa dimonitor dengan HP,” jelas Arief.Situasi pandemi pun memberikan motivasi dan inspirasi teknologi tanpa sentuh untuk monitor kuantitas dan kualitas air. “Semoga muncul inovator mengembangkan teknologi dari Indonesia” harapnya.perlu dibaca : XL Axiata Bikin Solusi IoT untuk Bantu Tingkatkan Kualitas Budidaya Ikan dan Udang Kawasan tambak udang di Desa Sarjo Kabupaten Pasangkayu, Sulawesi Barat. KKP membantu mengembangkan budidaya udang berkelanjutan di kawasan tersebut. Foto : KKPStandar Budi dayaSedangkan Novia Priyana, tim ahli GQSP Indonesia memaparkan pedoman badan pangan dunia atau FAO sudah diadopsi Indonesia. FAO meluncurkan panduan integritas lingkungan, inovasi, dan pencegahan limbah dari teknologi. Pelaku pembudidaya diharapkan bisa meningkatkan operasional yang aman.Ada standar nasional Indonesia atau SNI cara pembenihan ikan yang baik, merangkum 4 pilar yakni keamanan pangan, kesejahteraan ikan, kepeduliaan lingkungan, dan sosial ekonomi.“Sedang disiapkan SNI inovasi. Bekerjasama dengan pembudidaya untuk menilai aplikasi teknologinya,” ujarnya. Inovator menciptakan teknologi dengan standar dan berprinsip 4 pilar itu.Standar ini untuk memastikan keempat pilar terpenuhi. “Menurunkan biaya produksi dan transaksi, peluang pasar, posisi yang lebih kompetitif, dan memperbaiki manajemen risiko,” lanjut Novia.Prioritas KKP 2020-2024 adalah perikanan budidaya yang fokus membantu 5 komoditi yakni udang, lele, rumput laut, bandeng, dan patin. Misalnya menetapkan teknologi dan membangkitkan industri pasar domestik dan ekspor.Tanda SNI dan Indonesia Good Aquaculture Practices (IndoGAP) menjadi rujukan bagi yang sudah tersertifikasi. Logo IndoGAP disebut sebagai bukti ketelusuran kriteria tersebut selain media promosi.Diskusi virtual berlangsung padat dengan ragam pertanyaan dari pelaku usaha. Misalnya Alexander Nicholaus bertanya masa depan perikanan budi daya jika pandemi masih sampai 2021? Coco Kokarkin meyakinkan jika ikan adalah komoditas yang masih plus nilai ekspornya. Kuncinya adalah pemasaran, penggunaan teknologi dan sertifikasi keamanan pangan serta sertif lingkungan untuk masuk jalur ekspor.Untuk mampu bersaing, Arief Arianto menganjurkan memberikan nilai tambah untuk usaha atau produk perikanan seperti kemampuan untuk ditelusuri. Memberi jaminan konsumen bahwa ada jaminan keamanan dari produsen dan keunggulan pengirimannyabaca juga : Maksimalkan Budidaya Ikan, Mahasiswa Kembangkan Aplikasi Sahabatambak Hamdani, kepala bagian pembesaran PT Bali Barramundi, Buleleng, Bali pada Kamis (10/5/2018) memberikan pakan pada ikan budi daya di keramba. Perusahaan itu telah menerapkan prinsip Seafood Savers untuk perikanan berkelanjutan. Foto : Anton Muhajir/Mongabay Indonesia Kompetisi Inovasi AkuakulturImam Musthofa, Koordinator Program Perikanan dan Kelautan WWF Indonesia mengundang pelaku usaha mengikuti kompetisi akuakultur ini.AgResults membuka kompetisi tantangan Proyek Akuakultur Indonesia, yang dibuka awal Januari 2021 dan berjalan selama empat tahun. Proyek ini mengajak sektor swasta membuat inovasi penguatan sektor akuakultur untuk mendorong pembudidaya skala kecil mengadopsi teknologi.Jumlah pembudidaya skala kecil di Indonesia mencapai 70-80% dari total produsen akuakultur dan sebagian besar berlum produktif. Proyek AgResult bersama WWF-Indonesia akan menggunakan kompetisi dengan skema hadiah pay for results untuk mendorong peningkatan adopsi teknologi yang meningkatkan produktivitas seperti auto-feeder dan aerator untuk pembudidaya skala kecil. Kompetisi ini melibatkan penyedia alat dan pembudidaya.Hadiah total sekitar USD450.000 teknologi akuakultur, khususnya aerator dan auto-feeder, yang mereka jual atau sewa ke pembudidaya skala kecil. Selain itu, kompetisi ini akan memberikan hadiah utama kepada para kontestan yang berhasil menjual teknologi paling banyak selama periode kontes berlangsung yaitu empat tahun. Para juri akan melacak penjualan dan memverifikasi hasil untuk memastikan bahwa hadiah didistribusikan secara akurat.Program ini didanai oleh USAID (AS), FCDO (Inggris), DFAT (Australia), GAC (Kanada), dan Bill and Melinda Gates Foundation.Proyeksi konsumsi perikanan meningkat, dari 34 kg/tahun pada 2012 menjadi 60 kg/tahun pada 2030. Antara 70-80% produsen akuakultur pembudidaya skala kecil, dan menurutnya perlu peningkatan kapasitas. Jalan pintas produktivitas meluaskan area tambak, tapi bermasalah di tata guna lahan.Jika bisa menyediakan teknologi yang mudah diaplikasi, saat ini masih skala ujicoba dan feasible secara ekonomi. Pemerintah Indonesia menetapkan tujuan ekspansi akuakultur untuk 2030. “Jika produksi bisnis biasa, target produksi sulit dipenuhi dan menambah lahan,” jelasnya.Ada dua kategori kompetisi, aerator dan auto feeder tradisional dan modern. Juga sertifikasi pembenihan IndoGAP untuk ikan air tawar dan udang monodon.Technical advisory committee program ini adalah Coco Kokarkin, ahli budidaya, Evelyn Nursali, ahli dunia usha perikanan, Arief Arianto, ahli teknologi, dan Ery Damayanti, ahli gender. Seorang pekerja tengah memberikan makanan ikan di keramba jaring apung yang ada di Danau Toba. Foto: Ayat S karokaro/Mongabay IndonesiaSumber: Mongabay ...
Shrimp Farmers in Ecuador Tap An App To Seal A Better Deal
Teknologi

Shrimp Farmers in Ecuador Tap An App To Seal A Better Deal

XpertSea’s newest machine-learning product digitizes marketplace to help producers compete – and be compensated – fairlyWhen Quebec, Canada-based XpertSea introduced its new, artificial intelligence-powered smartphone mobile app at Ecuador’s Aqua Expo last month, the company’s booth was inundated with dignitaries, journalists and farmers. The minister of foreign affairs attended with the vice-minister of environment and the president of Ecuador’s National Chamber of Aquaculture. Twenty journalists sought interviews and farmers clamored for information about the app and for the free white trays XpertSea was distributing to anyone who wanted them.The app allows farmers to capture accurate shrimp health and quality data by taking a photograph of a sample of shrimp from their ponds using the white tray and their smartphone. XpertSea’s platform, which contains growth data accumulated over many years, accurately predicts the commercial size of the shrimp and the pond value. When farmers are ready to sell their harvest they do so through the app, which puts their harvest out to bid to different shrimp processors across the country. XpertSea manages and guarantees the transaction between farmer and processor, ensuring that farmers are paid 80 percent of their crop value within 24 hours of harvest, and the remainder within a few days.Guillaume Breton-Ménard, general manager of XpertSea in Ecuador, said farmers at the trade show were excited about the technology and keen to try it.“Farmers are really motivated to digitalize their operations and there’s no other technology out there like this,” he said. “We’re able to prove the accuracy of the technology and because we’re a Canadian company that has been working on this solution for a long time, they trust our data. We’ve collected hundreds of thousands of data points just from Ecuador, so the technology the farmers are using is specific to their country.”To date the app is only available in Ecuador but in the past two months alone it has been downloaded by 250 farmers. According to XpertSea, in the first few months that the app was operational, more than 7 million pounds of shrimp were traded on it.Harry Viafara owns Exporcareca, a 160-hectare shrimp farm in Taura, which is located in the province of Guayas, and began using XpertSea’s app three months ago.“Prior to using this app, I could only sell my shrimp to three or four processing plants in Guayas with whom I had an existing relationship,” he said. “I would get 50 percent of payment three days after harvest and in worst-case scenarios, I had to wait 30 days after harvest for payment. In some cases the processing plants would cancel our agreement or change the terms of the agreement after they received my shrimp.”The app has opened up new markets for his shrimp trading beyond the provincial boundaries of Guayas, creating new relationships where his payment is guaranteed by XpertSea, meaning he carries no risk of the transaction failing.“When I use the app I harvest in the morning and get paid in the afternoon – and the payment price is better than before,” he said. “I’m selling as far away as Santo Domingo now. With these better prices and many more selling options, I can increase production because I know there’s more demand for my shrimp.”Valerie Robitaille, CEO at XpertSea, said it’s exciting to see farmers get a real return on their product and grow better shrimp: “Before we launched this app, the shrimp were trading more as a commodity. Now we have buyers who have a specific order for quality shrimp connecting with farmers who are getting better prices. We’re really hopeful this will give farmers monetary incentive to keep producing a better product.”Producers and buyers have conducted hundreds of transactions through XpertSea’s digital marketplace. Photo courtesy of XpertSea.XpertSea offers shrimp farmers access to a large network of buyers. “Because trust is so important in that market, we make a guarantee on behalf of the buyer, to the farmer, and this way the farmer feels comfortable selling to that buyer and starting a new relationship,” she said. “It makes it easier for farmers to do business with new buyers they did not previously know.”The unique shrimp data collected by the app enables XpertSea to significantly reduce misunderstandings and potential conflict between growers and processors, thus managing the risk it assumes.“Having that data on the crop allows us to significantly reduce our risk, and when spread across all transactions, the risk from each individual transaction is minimized,” Robitaille said.XpertSea charges a transaction fee for each transaction that varies according to the total value of production, the terms of the transaction and how much risk the company assumes on behalf of the buyer. “Sometimes the buyer pays the fee, sometimes the farmer, and sometimes they share it,” she said. “It depends on the dynamic of the market. Oftentimes, when a farmer has good shrimp, there will be a lot of buyers and one of those buyers will agree to subsidize the fee.”XpertSea plans to release the app in a yet-to-be-determined country in Southeast Asia in the future. “There’s so much complexity in the value chain and the transaction, and every marketplace is unique,” Robitaille said. “As we do proof-of-concept in other places we’re seeing great potential because other markets are even more segmented than Ecuador. But we’ll most likely move forward market by market, using Ecuador as our test case.”In Ecuador the company has 15 staff on the ground working with farmers and buyers. During the pandemic many of the interactions with farmers have been via social media, and while the response has been encouraging, Robitaille said it takes time to build trust.“These are big transactions and we need to be with the farmers to ensure they trust the platform,” she said. “We also have to ensure our payments are on time, our customer service is great and that we deliver flawless service to this marketplace.”Source: Aquaculture Alliance ...
UHO Akselerasi Pakan Ikan dengan Teknologi Penetas Telur
Teknologi

UHO Akselerasi Pakan Ikan dengan Teknologi Penetas Telur

Kementerian Riset dan Teknologi (Kemenristek)/Badan Riset dan Inovasi Nasional (BRIN) dan Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) Universitas Halu Oleo (UHO), berupaya mengakselerasi teknologi pelet (pakan) ikan terapung yang terintegrasi dengan teknologi penetas telur di Kota Kendari.Ketua pelaksanaan kegiatan PTDM, Suwarjoyowirayatno menjelaskan, upaya itu dimulai dengan melaksanakan kegiatan Produk Teknologi yang didiseminasikan ke Masyarakat (PTDM).Kegiatan ini sendiri diketuai oleh Suwarjoyowirayatno, beranggotakan Muh. Syukri Sadimantara dan Muh. Ali Sukrajab.“Kegiatan ini bertujuan untuk mengakselerasi proses hilirisasi produk teknologi hasil penelitian dosen yang dapat dimanfaatkan oleh masyarakat. Ada dua manfaat sekaligus dapat dicapai yaitu pendayagunaan produk teknologi hasil penelitian dan peningkatan kesejahteraan masyarakat,” ujarnya, Selasa (1/12/2020).Baca juga: Bantu Kelompok Budidaya Ikan, Tim PKM UNS Ciptakan Mesin Pembuat Tepung Ikan“Disisi lain, usaha untuk mencoba memproduksi sendiri pelet pakan ikan kurang berhasil karena pelet yang mereka produksi tidak dapat mengapung. Diperlukan inovasi teknologi tepat guna produksi pelet pakan ikan yang bisa mengapung sehingga bisa dioperasikan oleh mitra di lapangan,” jelasnya.Lebih lanjut Suwarjoyowirayatno mengatakan, kendala lainnya yang dihadapi dalam memproduksi pelet pakan ikan adalah harga tepung jagung yang terhitung mahal untuk di Kota Kendari. Padahal daerah ini menurutnya merupakan sentra produksi padi di Sulawesi.Karena itu, kata dia, dibutuhkan mesin penepung jagung dengan teknologi tepat guna yang bisa dioperasikan oleh para mitra. Termasuk juga teknologi pencampuran bahan baku tepat guna agar bahan-bahan pelet pakan ikan bisa tercampur dengan sempurna.“Untuk budidaya ikan sendiri, pelaku usaha juga mengalami kesulitan dalam hal sirkulasi air terutama untuk budidaya ikan mas dan nila yang membutuhkan sirkulasi air yang cukup. Dibutuhkan bantuan berupa pompa air yang kuat agar semua bisa berjalan dengan optimal,” terangnya.Baca juga: Maksimalkan Budidaya Ikan, Mahasiswa Kembangkan Aplikasi SahabatambakIa juga menambahkan, anggota kelompok BMI yang memiliki usaha peternakan ayam saat ini mengalami kendala terutama terkait ketersediaan anakan ayam (DOC) yang sulit didapatkan di Kota Kendari, sehingga harus disuplai dari daerah lain. Karena itu, dibutuhkan teknologi penetasan telur ayam menjadi DOC yang akan dibudidayakan sendiri oleh mitra.“Disisi lain, kondisi listrik di Kendari yang sering padam akan menjadi permasalahan dalam usaha penetasan telur tersebut, sehingga dibutuhkan energi alternatif berupa pembangkit listrik tenaga surya, yang bisa bermanfaat untuk operasional mesin penetas telur tersebut secara kontinyu tanpa khawatir listriknya padam,” urainya.Melihat sederet kendala dan persoalan tersebut, pihaknya berinisiatif membuat dan menyediakan mesin produksi pelet pakan ikan terapung untuk menghasilkan pakan yang berkualitas bagi petani ikan.Produksi pakan ikan terapung tersebut, menurutnya juga perlu didukung dengan teknologi penyiapan bahan bakunya, seperti teknologi penepung jagung dan pengaduk bahan baku agar bisa tercampur merata sebelum dicetak menjadi bentuk pelet.Baca juga: Guru Besar FPIK IPB Temukan Alat Pemisah Daging dan Duri Ikan“Termasuk juga memberikan bantuan pompa air tipe semi jet yang digunakan oleh pembudidaya ikan untuk menjaga sirkulasi air di dalam kolam yang mereka miliki,” katanya.Langkah solutif lainnya yang dilakukan adalah dengan membuat dan menyalurkan mesin penetas telur dengan kapasitas sedang yang dapat beroperasi dengan optimal dalam menghasilkan anakan ayam (DOC) yang sehat. Mesin tersebut, kata Suwarjoyowirayatno, perlu didukung oleh teknologi pembangkit listrik tenaga surya sebagai sumber energi yang murah dan kontinyu, sekaligus sebagai pengganti listrik dari PLN yang sering padam di daerah Kendari.“Solusi lainnya adalah melaksanakan pelatihan penggunaan teknologi-teknologi yang didiseminasikan, sehingga mitra penerima bisa menggunakan peralatan-peralatan dengan baik dan benar,” imbuhnya.Adapun beberapa peralatan yang diberikan kepada mitra PTDM yakni mesin pencetak pakan ikan terapung, mesin penepung jagung, mesin pengaduk bahan baku pakan, mesin penetas telur ayam, pompa air tenaga surya, pembangkit listrik tenaga surya (solar home system), yang digunakan untuk meningkatkan produksi maupun usaha mitra.Sumber: Detik Sultra ...
Usia 39 Tahun, Esti Jadi Profesor Termuda di Unmul, Ciptakan 4 Produk Obat Ikan dari Tanaman Lokal Kaltim
Teknologi

Usia 39 Tahun, Esti Jadi Profesor Termuda di Unmul, Ciptakan 4 Produk Obat Ikan dari Tanaman Lokal Kaltim

Esti Handayani Hardi, resmi menyandang gelar profesor di Fakultas Ilmu Kelautan dan Perikanan Universitas Mulawarman ( Unmul) Samarinda, Kalimantan Timur dengan usia termuda, 39 tahun sepanjang sejarah Unmul. Esti dikukuhkan sebagai guru besar oleh Rektor Unmul, Prof Masjaya, setelah memberikan orasi ilmiah di Lantai Empat Gedung Rektorat, Unmul, Jalan Gunung Kelua, Samarinda, Selasa (25/2/2020). Prof Esti berhasil menyelesaikan risetnya tentang "Pengembangan Akuakultur Ramah Lingkungan Berbasis Tanaman Lokal Kalimantan Timur" tahun 2019. Baca juga: Mengenal Jamu Ikan Buatan Guru Besar Unmul, Obat Berizin KKP Pertama dari 100 Persen Bahan Alami"Dia menjadi profesor termuda, setelah sebelumnya ada yang usia 40 tahun gelar profesor di Unmul," kata Masjaya dalam sambutannya, Selasa. Baca juga: Mengenal Rangga Sasana Sekjen Sunda Empire, Lahir di Brebes dan Dikenal Sebagai Profesor Tahun 1998-2020 Prof Esti menyelesaikan gelar strata satu di Universitas Diponegoro, Semarang, Jawa Tengah dengan konsentrasi ilmu budidaya perairan. Kemudian, Esti melanjutkan gelar magister di Institut Pertanian Bogor tahun 2002-2003 dengan konsentrasi ilmu air dan gelar doktor program pertanian Bogor dengan konsentrasi ilmu akuakultur tahun 2008-2010."Saya 11 tahun di Unmul meriset penelitian saya hingga dapat gelar profesor," kata Prof Esti kepada Kompas.com usai pengukuhan di Lantai Empat Gedung Rektorat Unmul, Selasa. Esti mengatakan, semua tahapan menuju profesor telah dia jalani mulai dari penelitian, penulisan artikel, hingga mengajar. Dapatkan produk Bioperkasa DISINI!Sejak 2012, Esti meneliti soal produk obat ikan. Menurutnya, ada tantangan yang menarik.  Di satu sisi, pemerintah memberi imbauan kepada masyarakat konsumsi ikan. Namun, sisi lain tak ada yang memberi jaminan kandungan dalam ikan sehat untuk tubuh. "Hampir tidak ada yang memastikan itu," jelas perempuan kelahiran Lampung tahun 1980 ini. Selain itu, pemerintah juga melarang pengunaan obat kimia, namun tak ada ketersediaan obat-obatan herbal yang memadai. Alasan tersebut mendorong dirinya meneliti obat-obatan herbal berbasis tanaman lokal bagi ikan. Awalnya, Esti meneliti 21 jenis tanaman di Kaltim. Namun, hasil riset hanya tiga tanaman yang mengandung unsur memenuhi obat ikan. Di antaranya, ekstrak temu kunci (Boesenbergia pandurata), ekstrak terung asam (Solanum ferox) dan lempuyang (Zingiber zerumbet) serta pakan tambahan berbasis terung asam untuk ikan air tawar. Baca juga: KKP Permudah Pelayanan Perizinan Pakan dan Obat Ikan"Dari tiga bahan baku ini sudah diolah jadi empat produk yang sudah dipatenkan dan kini telah dipasarkan di pasar dokumestik," jelas Prof Esti. Keempat produk tersebut di antaranya, bioimun dan three in one (3 in 1) merupakan obat antibakteri dan immunostimukan untuk ikan, produk Biofeed sebagai bahan pakan ikan dan Biostesi untuk mengurangi ikan stres dan lainnya. Saat ini, keempat produk ini masih di produksi dengan skala kecil di Fakultas Kelautan dan Perikanan Unmul. Sementara pasar sudah menyebar ke Jawa Tengah, Gorontalo, dan lainnya. "Saya ingin ke depan Unmul punya pabrik sendiri yang lebih besar untuk produk ini. Jadi ada income buat Unmul," kata Prof Esti. Suaminya, Sahid Agung Riyadi (38) lulusan D3 Hiperkes dan Keselamatan Kerja, Fakultas Kedokteran di Solo. Kini, suaminya bekerja di perusahaan swasta tambang nikel Sulawesi Tenggara, Sulawesi Tengah dan Papua. "Dia merelakan banyak waktu buat penelitian. Harus mengorbankan waktu buat anak-anak. Tapi bagi saya, karena istri saya hobi di dunia intelektual maka saya berikan kebebasan dia berpikir supaya lebih leluasa menitih karier," ungkap Sahid. "Karena ketika kebebasan berpikirnya dibatasi maka kariernya akan berhenti. Biarlah dia bebas berpikir," sambung SahidSumber: Kompas SamarindaBioperkasa adalah perusahaan yang memproduksi dan memasarkan obat dan pakan ikan yang berbasis tanaman herbal. Obat yang berbahan dasar alami ini aman untuk ikan konsumsi maupun ikan hias. Temukan semua produknya di Pasarmina pada bagian obat dan hormon, feed additive, dan probiotik.[adv - infomina] ...
Can Underwater Forecasting Promise Loss Prevention For Fish Farmers?
Teknologi

Can Underwater Forecasting Promise Loss Prevention For Fish Farmers?

In 2018 Grieg Seafood BC lost $8 million of farmed salmon in 24 hours as a result of a harmful algae bloom in Jervis Inlet. The incident highlighted just how crucial environmental predictions could be in allowing the company to mitigate that massive loss.“We knew we wanted to look at future predictability for changing conditions, have real-time information and look at the forecast trend for negative impacts to our farm sites,” Dean Tretheway, director of regulatory certifications and seawater production for the company, told the Advocate.Eighteen months ago he reached out to ScootScience, a Santa Cruz, Calif.-based company specializing in data management, data visualization, analytics and forecasting. When Tretheway shared Grieg’s environmental data with them, ScootScience designed a dashboard that could deliver deeper analytics.Also read: Optimisation of Feeding Strategies at A Fish Farm Through Mathematical Modelling“We were really impressed when they created a digital interface for us, allowing us to see all our sites in real time, as well as the predictive abilities of oxygen levels, plankton species and temperature,” he said.ScootScience was founded in 2013 and incorporated in 2017 but it wasn’t until January 2018 that the company had its first full-time employee, said Jon LaRiviere, CEO and co-founder. LaRiviere had studied geochemistry and climate, while his partner Evan Goodwin studied physical oceanography. The two combined their skills to bring data analytics common in ocean science to industry.The ocean conditions are becoming new and different with a warming climate and all this will help farms work with their ocean observing data and insurance companies, to figure out how to navigate climate change.“Farmers like Grieg have been monitoring temperature, salinity, oxygen and plankton for years,” said LaRiviere. “When they give us that data we unify it into one snapshot and bring in oceanographic data from buoys, ocean forecasting systems and models, remote sensing data from satellites and meteorological data from weather models. That gives them a complete picture of the ocean around their site.”ScootScience also does analytics and forecasting, delivering an underwater weather forecast aimed at increasing farmers’ lead times for standard mitigation.Also read: Maine Engineer Develops Low-cost Monitoring Buoy“We have a dashboard on our screens when we feed the fish so we can watch live conditions of the ocean and receive real-time information,” said Tretheway. “Whereas previously we would take one static reading per day on water oxygen levels, now we get a reading every 15 seconds and have an alarm-based system that notifies us when conditions are less than optimal. This allows us, for example, to turn on our compressors to help mix the deeper, cooler water up to the surface with the fish and reduce mortality.”Tretheway noted there are 12 species of plankton that are harmful to the salmon and specific parameters that merge to make the potential for those plankton more predictable.“When we see certain temperatures, salinity and other environmental conditions, we create a score that shows us the potential for increased risk, allowing us to turn on our mitigation equipment and take a precautionary approach,” he said.Grieg can also examine how well their mitigation measures have worked in the past. “By going through the historical record and auditing past events, farmers can see which of their responses were most correct. So they get an assessment of their disaster response,” LaRiviere said.Also read: Fish Back On The Menu with Oxair’s Yield Boosting TechnologyHis hope is that in the future, that data will allow producers like Grieg to approach their insurance companies with the actual risk profile of a particular site, its historical risk and how they have responded to those risks in the past.“This will give fish farming groups the ability to maximize the coverage that insurers are able to take on for each dollar premium, which is critically important as companies navigate warming oceans from climate change,” LaRiviere said. “The ocean conditions are becoming new and different with a warming climate and all this will help farms work with their ocean observing data and insurance companies, to figure out how to navigate climate change.”By next year Grieg Seafood BC plans to make this data available to the community at large, including First Nations tribes, universities and even activists, to foster more research and understanding about the coastal waters.“Our hope is that it will give us a deeper understanding of climate change and the cyclical changes happening on our coast,” Tretheway said.Source: Global Aquaculture Alliance ...
Surge of Off-flavor Solutions for RAS Continues
Teknologi

Surge of Off-flavor Solutions for RAS Continues

Even as the growth of recirculating aquaculture systems (RAS) promises a new growth curve for the industry worldwide – and in the United States particularly – land-based fish producers have a common challenge: mitigating the off-flavors such systems can impart on their product. They have help, though, as more start-up companies are eager to help them move past this time-consuming and costly issue.Currently, purging is the primary off-flavor solution that operators employ before sending their fish into the marketplace. In this method, fish are placed in a depuration tank where they are flushed with clean water until the off-flavor-causing metabolites geosmin (GSM) and 2-methylisoborneol (MIB) are relieved from their systems. GSM and MIB are released by microbes that grow within these land-based tank systems.Also read: Fish Back On The Menu with Oxair’s Yield Boosting TechnologyWhile the depuration process has developed over the last few years, it can still take well over a week and this system has a big compromise – because they are not eating, fish lose their body mass during the process, and quickly.Efforts to address off-flavors in RAS fish are off the chartsBiotechnology company Nova Q is exploring bacterial solutions to address the build-up of GSM and MIB in RAS systems from the start.“RAS is a huge and growing industry, but a key to unlocking the growth potential is in improving how it manages bacteria and biofilters in general,” Julian Beatty, managing director at Nova Q, told the Advocate.The Ireland-based company focuses on bacteria-oriented management and solutions in multiple sectors, but their latest innovative jump has been identifying bacteria that will break down GSM and MIB. Their market-available product, RAS-Right, is a liquid additive that contains a mix of bacteria species that when added to the RAS system enhances the nitrification process.Instead of focusing on eliminating the bacteria altogether, Nova Q focuses their expertise on functional nitrification production, working to develop and support a healthy microbial ecosystem throughout the RAS. “The biology is pretty well ignored,” said Beatty.Also read: OptiFarm - Optimal Water Quality and Healthy Fish On LandSeveral farms already use their products in the depuration system and are seeing lower levels of GSM and MIB, as well as healthy biological compositions within their systems at large.Nova Q recently completed a study comparing RAS Right as an alternative to the typical depuration purge process. Fish were able to keep eating and growing while GSM and MIB were dramatically reduced 69 and 56 percent, respectively.“It’s not so amazing that we know how to break down GSM and MIB – what’s amazing is that we don’t try to break down GSM and MIB before the purge starts,” said Beatty.Nova Q needs further studies to show that using RAS Right from the start prevents GSM and MIB in the first place. Nova Q is pursuing research with the Scottish Association for Marine Science and is in hopes of working with The Conservation Fund Freshwater Institute in West Virginia, USA to pilot a research project.“We really want to show the value of regular small maintenance dosing of our products and the impact that has on the overall stability, water quality and fish health,” said Beatty.RAS is just on the precipice of literally exploding. Many new systems are being planned and designed, each one bigger and with plans to become even bigger in time.Microbial solutions to mitigate off-flavors could be promising, and they have implications for a much easier RAS system and biofilter maintenance. Water sterilization and advanced oxidation are other methods that have continued to prove themselves in shortening the depuration process.Exciton Clean, a start-up based in Verona, Wisc., has proven its ability to slash the depuration time roughly in half with its novel advanced oxidation technology.Exciton Advanced Oxidation ProcessⓇ (eAOP)Ⓡ uses germicidal ultraviolet (UV) light combined with nanotube technology to produce photocatalytic hydroxyl radicals, which accelerates the oxidation of biological and chemical contaminants in the water.A look at the Exciton Clean reactor, which uses germicidal ultraviolet light combined with nanotube technology to produce photocatalytic hydroxyl radicals, accelerating the oxidation of biological and chemical contaminants in the water. Courtesy photo.“Our technology has multiple mechanisms of action and very rapidly destroys the off-flavor chemicals geosmin and MIB,” said Terence Barry, chief science officer of Exciton Clean.The company just completed a pilot study with Superior Fresh, an operational Atlantic salmon and steelhead trout aquaponics RAS facility, also in Wisconsin. There they tested the difference between the facility’s typical depuration process and a depuration process with the eAOPⓇ reactor.In the tank with their system running, a satisfactory depuration process was achieved in four days. But the real indicator was to test the presence of off-flavor chemicals in the fish flesh.Typically, 200 nanograms per kilogram of GSM in the fish flesh is the level where humans can detect the taste. But there are “supertasters,” as Jack Holland, general manager at Exciton Clean describes them, who can detect the earthy, muddy taste at as low as 100 nanogram per kilogram.Also read: Optimisation of Feeding Strategies at A Fish Farm Through Mathematical Modelling“You can see by actually testing the level of GSM and MIB in the fish flesh itself that between four to six days we reached the [satisfactory] level. When the fish went to market it was absolutely spot-on taste-wise,” said Holland. “We believe that the only true test is actually in the marketplace.”The Exciton Advanced Oxidation Process® could be more effective than existing chemical solutions of removing geosmin and MIB in water. “The real proof in the pudding was the speed at which we reduce the off-flavor chemical levels both in the water and in the fish,” said Holland.Exciton Clean’s future work is focused on larger systems, saltwater-based systems and biofilter replacement, but the short-term focus is on the depuration tank process, added Barry.Also read: Feeding Systems for Fish Farms and RASBoth Exciton Clean and Nova Q agree that minimizing or eliminating the depuration process would be a huge push forward for the RAS industry. As large-scale RAS systems continue to develop across the globe, the new systems will be the testing grounds for innovative technologies like theirs.“RAS is just on the precipice of literally exploding,” said Holland. “Many new systems are being planned and designed, each one bigger and with plans to become even bigger in time.”Source: Global Aquaculture Alliance ...
Optimisation of Feeding Strategies at A Fish Farm Through Mathematical Modelling
Teknologi

Optimisation of Feeding Strategies at A Fish Farm Through Mathematical Modelling

Optimisation is a keyword that bounces inside every fish farmer's head. Nowadays, more than ever, fish farmers seek to optimise every single aspect of their businesses, a motivation that is imposed by the increased competitiveness within the fish farming industry. This pressure is particularly felt in the EU, where aquaculture production has been stagnant in terms of volume (FAO, 2020) and generally subjected to global fish price reductions (e.g., seabream and seabass).This means that, in order to keep businesses running with attractive profits, fish farmers are continuously restructuring their operations, seeking optimisation and efficient production. Looking into the different manageable resources and operations of a fish farm, feeding is usually the one process that represents the greatest weight in the cash outflow, accounting for 30-60 percent of total operational costs. Thus, feeding is one of the main resources and operations that have been targeted for optimisation.In the past few years, the aquaculture industry has seen significant advances with regard to feeding optimisation. These advances have been made at multiple levels, covering areas that span from nutrition to operation monitoring, e.g., feeds formulated based on more precise nutritional requirements and use of underwater cameras to assist in feeding operations. More recently, this industry has seen the emergence of decision-support tools that leverage the potential of mathematical algorithms. Examples include tools based on mechanistic mathematical models that describe fish growth, feed conversion and waste production, therefore showing great potential to support feeding optimisation activities. Although these types of tools have been used by the scientific community since the 90's (e.g., Conceição et al., 1998; Lupatsch and Kissil, 1998; Nobre et al., 2019), only recently did they become available to be used by non-modelling experts and generalised for fish farmers.Also read: Maine Engineer Develops Low-cost Monitoring BuoyIn this article, we illustrate an application of a mechanistic nutrient-based model to optimise the feeding performance in a pre-growing unit of a commercial farm (Piscicultura Vale da Lama, Portugal). For that purpose, we have used the FeedneticsTM model in a typical two-step approach:Gaining confidence in model robustness, where the FeedneticsTM model performance was evaluated by comparing the model predictions against historical data of European seabass grown in the pre-growing unit;Assessing the performance of different feeding strategies, where the performance of European seabass fed under different feeding strategies was compared in terms of growth, feed conversion, economic conversion, total N waste and total solids waste.Gaining confidence in model robustnessFeedneticsTM is a web-application that includes a mechanistic nutrient-based model which predicts fish growth and composition along time. This web-application uses information on temperature, feed intake and feed properties.The model has been calibrated with a large and diverse range of datasets and is currently available for gilthead seabream, European seabass, and rainbow trout.Also read: Scientists Accidentally Create New FishAiming at demonstrating model robustness, in the first step of this work, the predictions of the FeedneticsTM model were evaluated against historical data of Piscicultura Vale da Lama, a commercial fish farm located in Portugal. The historical data set includes information about six pre-growing tanks of European seabass and contains daily resolution information, part of which was recorded automatically by sensors and partially manually by the technical staff throughout the production period (i.e., temperature, number of fish, amount and type of feed). Data regarding feed properties was based on information shared by the commercial farm, which was mainly taken from the official technical sheets and feed labels provided by the respective feed producers. For the cases where there was a lack of essential data to run the model (e.g., digestibility coefficients and amino acid profiles), default values that comply with the nutritional requirements of the species under evaluation were assumed.Figure 2 shows a comparison between predicted and measured body weight values. Overall, the FeedneticsTM model accurately predicts the body weight for this historical seabass data set, presenting a mean absolute percentage error (MAPE) of about 8.9 percent. Given these positive results, we can say that the model can be used with confidence to assess the performance of different seabass feeding strategies at this commercial farm.Assessing the performance of different feeding strategiesGetting clear conclusions about the performance of different feeding strategies based on the direct analysis of historical data can be tricky. Among others, the main difficulties are associated to the fact that it is not straightforward to separate the effects related to nutrition from those related to other factors (e.g., temperature). Decision-support tools based on mathematical models can be a major asset in this regard, since they allow to quickly compare different feeding strategies while keeping other unrelated factors fixed.In the second step of this work, FeedneticsTM was used to assess the performance of European seabass when fed under three different feeding strategies (A, B and C), during the pre-growing phase of the Piscicultura Vale da Lama farm. All feeding strategies share a common plan, only differing in terms of the commercial feeds provided during the time periods of 34-54 days and 66-135 days. The amount of feed provided in each scenario was managed based on the Piscicultura Vale da Lama's feeding table, which is adjusted for its specific farming and environmental conditions.Similar to what was reported in the previous section, the majority of the data regarding the feed properties was based on information available in the official technical sheets and feed labels of the respective feed producers. For the cases where there was a lack of essential data to run the model (e.g., digestibility coefficients and amino acid profiles), default values that comply with the nutritional requirements of European seabass were assumed. Table 1 shows the characteristics of the three different commercial feeds (A, B and C) under evaluation. The characteristics of the common commercial feeds are not shown, since they are transversal to all feeding strategies.Also read: Fish Back On The Menu with Oxair’s Yield Boosting TechnologyThe three different feeding strategies were run in FeedneticsTM for a production period of 137 days, considering an initial average body weight of 18.4g, an initial number of fish of 57,000 individuals, a mortality rate of about 4.7 percent and a historical temperature profile (13.9-25.3 °C). For the farming and environmental conditions considered, the model predictions suggest that following feeding strategy B (FBW = 117.2 g) leads to a higher growth compared to feeding strategies A and C (FBW = 104.9 and 106.6 g, respectively). In terms of feed and economic conversion, feeding strategy B also presents the best results (FCR = 1.07 and ECR = 1.51 Eur/kg) and, therefore, is the most cost-efficient one for the farming and environmental conditions of Piscicultura Vale da Lama pre-growing unit, allowing savings on feed of about EU €290-670-per-tonne of fish produced, compared to feeding strategies A and C respectively.In addition, the best performance of feeding strategy B is consequently translated in terms of waste production, resulting in lower waste outputs of around 13 percent and 12 percent (total N waste and total solids waste, respectively), in comparison to feeding strategies A and C. Ultimately, this lower waste production, that is obtained by following feeding strategy B, can contribute to maintaining better water quality and minimising environmental impact.Final remarksDecision support tools that leverage the potential of mathematical models can be important assets for fish farmers, supporting the constant seeking for a more efficient production system. By allowing the comparison of multiple feeding scenarios, while keeping factors unrelated to nutrition fixed, these types of tools provide a strong basis for feeding evaluation and optimisation. This is something that may be difficult to achieve through historical data analysis alone, especially at a time when feed producers are commercialising aquafeeds which incorporate increasingly higher levels of sustainable ingredients.This article illustrates how mathematical models, like FeedneticsTM, can be used to optimise feeding strategies from a cost-efficiency perspective. Moreover, models with this high level of detail (e.g., considering amino and fatty acids profiles of feed and fish) can also be used to optimise feeding strategies from a value-added perspective. For instance, different feeding strategies can be evaluated using these types of models in order to produce fish with higher omega-3 fatty acids content at more attractive costs.Source: aquafeed.co.uk ...
Maine Engineer Develops Low-cost Monitoring Buoy
Teknologi

Maine Engineer Develops Low-cost Monitoring Buoy

Environmental monitoring systems can be as simple or as complex as anyone would like them to be, depending on one’s purpose. But for University of Maine engineering alum Joshua Girgis, a key requirement was to come up with one that oyster and seaweed farmers can afford.Girgis is one of 30 interns at Maine Aquaculture Innovation Center. Under the guidance of Dr. Chris Davis, director of the Maine Aquaculture Innovation Center, Girgis has developed a low-cost environmental monitoring buoy.Environmental buoys are deployed in freshwater or marine environments to gather information on water conditions such as ocean temperature and salinity. For farmers, this helpful information guides them as to where to site their farms or when to put seed oysters and kelp in the water, for instance.Also read: Fish Back On The Menu with Oxair’s Yield Boosting TechnologyBased on the current prototype Girgis has produced, each farmer is expected to shell out $2,000 for the gadget and $7 monthly operating fee.Joshua Girgis holds prototype of the environmental monitoring buoy he developed Photo: Maine Aquaculture Innovation CenterField-testing has shown stable results, but some tweaks are being done to keep the data buoy accurate, precise, small, easy to clean and to make sure it has a long operating life.Girgis believes this price is much lower than similar products in the market, but he acknowledged that more market research is needed before he could make a clear comparison.He hopes to lower the price even further. “We are currently doing some research and in-depth engineering on reducing our large costs, specifically in instrumentation,” he said.Also read: Feeding Systems for Fish Farms and RASField-testing has shown stable results, but some tweaks are being done to keep the data buoy accurate, precise, small, easy to clean and to make sure it has a long operating life.The project is a research-industry partnership supported by the UMaine System Research Reinvestment Fund, Maine Aquaculture Innovation Center, Maine Technology Institute, Maine ESPCoR and the US National Science Foundation, and the University of Maine Darling Marine Center.Source: Aquaculture North America ...
Scientists Accidentally Create New Fish
Teknologi

Scientists Accidentally Create New Fish

A new fish hybrid accidentally bred in a Hungarian lab made the news this past summer and the Internet quickly nicknamed it “sturddlefish” because it is a cross between an American paddlefish and a Russian sturgeon.While it may be tempting to explore its commercial prospects, the researchers that inadvertently created the hybrid say its aquaculture potential is still a subject for debate.But suppose the sturddlefish inherited the paddlefish parent’s planktivorous feeding habit, “the new hybrid can play an important role in adapting pond aquaculture to the challenges of climate change,” the researchers said.Also read: Anchoring Breakthrough For Aquaculture“Non-fed species have a lower carbon footprint than fed ones, and the co-culture of a filter feeder with relatively high market value as a supplementary species would strengthen pond aquaculture both from an ecological and environmental perspective.”Nicknamed ‘sturddlefish,’ the new hybrid is a combination of American paddlefish and Russian sturgeon Photo: Florian Toth via The New York TimesHow could this species have been bred by chance anyway?According to the paper published in the journal Genes, the original intention of the researchers from Hungary’s National Agricultural Research and Innovation Centre and Research Institute for Fisheries and Aquaculture, was to apply gynogenesis. This is a system of asexual reproduction where, in this case, only the sperm of the American paddlefish is required – but not its DNA – to fertilize the egg of the Russian sturgeon.To their surprise, the eggs produced fish. The researcher said this was the first successful hybridization between these two species. Also read: eDNA Technology More Effective In Monitoring Salmon RunsThis is not the first sturgeon hybrid, however. Sturgeon hybrids are commonly used in aquaculture to exploit the advantages of the superior qualities of the individuals being crossbred. In fact, another study estimated that hybrids account for approximately 35 percent of global sturgeon meat and 20 percent of caviar production.Source: Aquaculture North America ...
Mengenal Jamu Ikan Buatan Guru Besar Unmul, Obat Berizin KKP Pertama dari 100 Persen Bahan Alami
Teknologi

Mengenal Jamu Ikan Buatan Guru Besar Unmul, Obat Berizin KKP Pertama dari 100 Persen Bahan Alami

[Advertorial Infomina]Prof Esti Handayani Hardi memulai riset jamu ikan pada 2012. Berangkat dari keresahan mengenai praktik budidaya ikan yang masih akrab dengan produk-produk untuk manusia. Terkendala mahalnya pengiriman obat khusus ikan dari luar pulau.“Dari situ saya mikir, tanaman Kalimantan ada banyak kenapa enggak Kalimantan bikin obat untuk perikanan?” sebut Prof Esti kepada kaltimkece.id, awal Oktober lalu. Dari ragam tanaman di Kalimantan, terutama Kaltim, dengan manfaatnya yang bermacam-macam, akhirnya diuji coba kombinasi ideal menjadi jamu ikan. Hasilnya adalah yang kini diproduksi secara masif. Diperuntukkan ikan air tawar hingga ikan laut dan udang .Jamu ikan hasil riset Esti sudah tahap industrialisasi. Turut dimodali pendanaan Lembaga Pengelola Dana Pendidikan yang tak mudah didapatkan. “Pengajuannya agak ribet. Satu project saja bisa sampai Rp 2 miliar. Saya dapat Rp 1,9 miliar untuk menjadikan hasil riset ini produk yang siap dikomersialisasikan,” terangnya.Temukan Produk Bioperkasa disini!Ketika memulai riset tersebut pada 2012, Esti juga mendapat pendanaan Kemenristekdikti selama 6-7 tahun yang kalau diakumulasikan nilainya mencapai Rp 4 miliar. Penelitian pun dimulai. Mencari tanaman awal yang berpotensi. Diutamakan tanaman yang tak bersinggungan produk untuk manusia. Sehingga lebih murah dan mudah didapatkan. Terutama dalam hal budidaya.Dari riset awal, ditemukan 32 jenis tanaman potensial yang memiliki kemampuan antibakterial, immunosimultan, prebiotik dan adjuvant. Hingga setelah berbagai pendalaman, mengerucut ke tiga jenis tanaman. Yakni  Temu Kunci (Boesenbergia pandurata), Terung asam (Solanum ferox), dan Lempuyang (Zingiber zerumbet).Untuk mendapatkan bahan baku tersebut, doktor ilmu akuakultur jebolan Institut Pertanian Bogor (IPB) tersebut bekerja sama dengan dua petani dari Desa Giri Agung, Sebulu, dan Loa Kulu, Kabupaten Kutai Kartanegara. Dibeli dengan harga relatif tinggi. Antara Rp 12-15 ribu per kilogram. Dalam produksi jamu ikan sepekan, bisa menghabiskan hingga 100 kilogram tanaman.Di sinilah kemudahan bahan baku memiliki peranan penting. Terung asam biasanya panen setelah 6-7 bulan penanaman. Sedangkan lempuyan bisa lebih cepat yakni 4-5 bulan. Demi menjaga kualitas dan rasa, jamu ikan mesti diolah dengan bahan baku dari sumber yang samaEsti membedakan jamu ikan buatannya dalam lima produk. Yakni Bioimun, Biopremix, Biostesi, Biofeed, dan Fitoimun. Masing-masing dibuat dengan bahan baku seragam namun dalam komposisi berbeda. Sesuai peruntukan dan kebutuhan pembudidaya.Secara umum, produk tersebut berguna meningkatkan nafsu makan ikan. Membuat ikan tahan terhadap kondisi lingkungan yang buruk. Termasuk perubahan suhu dan bahan organik. Pertumbuhan ikan pun dapat lebih cepat. Juga tahan terhadap penyakit, luka, mata menonjol, nafsu makan menurun, warna tubuh pucat, dan kematian dalam jumlah besar yang disebabkan bakterial golongan Aeromonas serta Pseudomonas.Jamu tersebut juga membuat hasil panen ikan memiliki daging yang kenyal dan lebih tahan busuk. Yang terpenting juga ramah lingkungan. Mudah hancur dan terurai. Tak menyebabkan residu ikan serta manusia.Dari pendanaan LPDP, jamu ikan yang dikembangkan terdiri dari dua produk. Yakni Bio Imun dan 3 in 1 Bio Imun. Nama terakhir sedang diuji coba terhadap udang di Lampung serta Malang. Esti juga menjalin kerja sama dengan Balai Riset Perikanan Air Tawar untuk penggunaan produk di Suka Bumi, Maros, dan Jawa Tengah.Berbagai respons positif didapatkan namun bukan berarti tanpa cela. Satu-satunya keluhan adalah harga yang dianggap kemahalan. Esti mematok satu botol jamu ikan ukuran 100 mililiter sebesar Rp 30-35 ribu. Ia memaklumi jika anggapan produknya kemahalan mencuat di kalangan pembudidaya.Menurutnya, selama ini pembudidaya ikan bisa mendapatkan obat ikan ukuran 250 mililiter dari Tiongkok hanya dengan membayar Rp 15 ribu. Perbedaan harga yang mencolok disebabkan bahan baku yang digunakan. Produk asal Tiongkok tersebut dibuat dengan berbagai bahan kimia. Sedangkan jamu ikan murni bahan alami.Umumnya, obat ikan dari bahan kimia memiliki keefektifan yang lebih tinggi. Namun demikian, rentan memberi berbagai efek samping. Bisa terasa dengan cepat atau jangka panjang. “Dihitung secara ekonomi dengan yang kimia, jamu ini memang lebih mahal. Tapi perlu diperhatikan sisi keberlanjutannya dengan memakai bahan alami. Tak meninggalkan residu, tidak menyebabkan resisten, dan mencegah ikan kebal terhadap obat. Kalau menggunakan antibiotik kemungkinan mengalami resisten tinggi,” urai Esti.Beli Bioimun Sekarang!Secara jangka panjang, penggunaan jamu ikan juga bakal lebih bermanfaat terhadap manusia. Memungkinkan masyarakat mengonsumsi ikan yang jauh dari paparan zat kimia. Hal ini sudah umum di luar negeri namun tidak dengan Indonesia. Di Tanah Air, masih sulit menemukan obat ikan menggunakan 100 persen bahan alami. Produk serupa dari negeri inipun sulit menembus pasar internasional yang umumnya menolak produk mengandung antibiotik.Esti pun turut mengincar pasar ekspor kelak. Namun kini ia fokus terhadap tahap industrialisasi yang tengah berlangsung. Untuk dapat dikomersialisasikan, izin edar dari Kementerian Kelautan dan Perikanan (KKP) RI tengah berproses. Hasil laboratorium telah didapat dan dinyatakan sesuai kriteria. Tersisa pengurusan berkas sebagai tanda resmi produk tersebut mendapat izin edar.Ketika pengesahan izin edar dari KKP telah dikantongi, jamu ikan buatan Esti menjadi produk pertama dalam daftar obat KKP yang terbuat dari 100 persen bahan alami. Dan untuk mendapat izin edar bukanlah mudah. Produk jamu ikan mesti melewati berbagai tahapan. Terutama di level kestabilan yang begitu menantang untuk produk berbahan alami.“Keberagaman bahan baku, teknik pembuatan, dan packaging memengaruhi keefektifannya karena bahan yang labil. Maka kami mencoba memroses dengan memenuhi SOP sehingga memiliki standar yang sama. Siapapun yang memakai memiliki efek yang sama,” urai Esti.“Sehingga, bahan baku jamu ikan harus dari satu sumber. Dan prosesnya juga harus memenuhi persyaratan. Dari pemotongan, pengeringan, hingga filling atau pencampuran,” sambungnya.Baca juga: Bantu Kelompok Budidaya Ikan, Tim PKM UNS Ciptakan Mesin Pembuat Tepung IkanDalam seminggu, jamu ikan diproduksi sebanyak seribu botol. Esti dibantu dua staf yang pengerjaannya dilakukan di Laboratorium Bioteknologi Industri Fakultas Kehutanan Universitas Mulawarman. Disalurkan kepada pembudidaya ikan yang mayoritas berasal dari Jawa Barat, Lampung, Pekalongan, Jawa Timur, dan Gorontalo. Sedangkan dari Kaltim meliputi Sangatta, Kutai Timur; hingga Muara Kaman, Kukar. Distributor produk jamu ikan ini juga terdapat di Jawa Barat dan Jakarta. Bisa pula didapatkan di situs e-commerce Tokopedia. “Di Loa Kulu juga ada petani besar yang sekaligus menjadi distributor untuk daerah Loa Kulu,” terang Esti.Hasil riset Esti pada 2012, tak hanya melahirkan produk jamu ikan yang punya manfaat hebat. Berbagai dana riset kompetisi berhasil diperoleh dalam rangka hilirisasi produk obat ikan alami.  Untuk kedua produk Bioimun dan 3 in 1 Bioimun mendapatkan pendanaan dari LPDP melalui program RISPO kompetitif untuk industrialisasi dengan menggandeng mitra Industri CV Bioiperkasa dan PT Nutritek Pratama Indonesia, serta Minapoli sebagai mitra distributor dan pemasaran.Tidak hanya produk, riset itu juga bagian dari lebih 30 publikasi ilmiah skala nasional maupun internasional terindeks scopus buatannya. Menjadi salah satu parameter penilaian Kementerian Riset, Teknologi, dan Pendidikan Tinggi mengganjar Esti gelar profesor atau guru besar dalam bidang ilmu parasit dan ilmu ikan pada Oktober 2019. Kala itu, perempuan kelahiran Lampung 1980 tersebut baru berusia 39 tahun. Bersama sembilan guru besar lainnya, ia dikukuhkan sebagai guru besar di ruang pertemuan lantai 4 Rektorat Unmul pada 25 Februari 2020. (*)Sumber: Kaltimkece.idBioperkasa adalah perusahaan yang memproduksi dan memasarkan obat dan pakan ikan yang berbasis tanaman herbal. Obat yang berbahan dasar alami ini aman untuk ikan konsumsi maupun ikan hias. Temukan semua produknya di Pasarmina pada bagian obat dan hormon, feed additive, dan probiotik. ...
Fish Back On The Menu with Oxair’s Yield Boosting Technology
Teknologi

Fish Back On The Menu with Oxair’s Yield Boosting Technology

With fisheries around the world close to or beyond sustainable limits, and current health recommendations advising an increased intake of oily fish to help protect against heart disease, governments are warning that that the only way to satisfy consumer demand is the continued growth of aquaculture.The good news is that fish farms can increase stocking densities and improve yields by up to one-third by specifying PSA oxygen applications from gas separation specialist Oxair, which can introduce oxygen to fish tanks in its pure form. The benefits of oxygenation are well known within the aquaculture industry: fish require at least 80 percent oxygen saturation in the water for optimal growth. Insufficient oxygen levels cause poor digestion in the fish, so that they require more food and the risk of illness also increases.Also read: Feeding Systems for Fish Farms and RASConventional oxygenation methods, based on the addition of air alone, quickly reach their limits because, in addition to the 21 percent oxygen that air contains, air also contains other gases, in particular nitrogen. Applying the same technology as that used in medical facilities, Oxair's gas generators use Pressure Swing Adsorption to introduce pure oxygen directly into the water. This enables the production of much greater quantities of fish in a comparatively small volume of water and causes the fish to grow larger as well. This enables even small enterprises to farm considerably more biomass, making it easier for them to assert themselves in the economic environment.James Newell, Oxair's CEO, explained, 'We supply PSA equipment for many facilities around the world, from aquacultures in Singapore to the University of Tasmania's research facility. Our installation at a barramundi farm in Darwin has shown that, for every 1kg of oxygen pumped into the water, 1kg of fish growth results. Our generators are currently being used to farm salmon, eels, trout, prawns and snapper, among other varieties, at a global level."Also read: OptiFarm - Optimal Water Quality and Healthy Fish On LandMore efficient to run than traditional paddlewheel equipment, Oxair's generators increase the partial pressure and, thus, the natural saturation limit in the water by a factor of 4.8 compared to aeration with mere air. A steady supply of oxygen is vital, especially since the majority of fish farms are located in remote areas. Using Oxair's equipment, fish farms can maintain a reliable in-house supply of oxygen rather than depending upon tanker deliveries which, if delayed, could compromise the quality of a fish farm's entire stock.Farms can make further savings as fish health and metabolism are improved, so less feed is needed. As a consequence, salmon farmed in this way contain a higher concentration of omega-3 fatty acids and develop an improved flavour. As the quality of the water determines the quality of the fish, Oxair's equipment can also be used to create the ozone needed in water recycling reactors to sterilise the used water, which is then treated with UV light before being recirculated into the tank.Also read: Renewable Energy Could Transform Offshore AquacultureOxair's designs are focused on meeting exacting customer requirements, reliability, ease of maintenance, safety, and plant self-protection. The company is a world leading manufacturer of gas process systems for shipboard and land-based use, to suit any requirement.Source: Aquafeed.co.uk ...
Bantu Kelompok Budidaya Ikan, Tim PKM UNS Ciptakan Mesin Pembuat Tepung Ikan
Teknologi

Bantu Kelompok Budidaya Ikan, Tim PKM UNS Ciptakan Mesin Pembuat Tepung Ikan

Tim Program Kemitraan Masyarakat (PKM) Group Research (GR) Energy Conversion, Combustion, and Energy Education (ECCEE) Universitas Sebelas Maret (UNS) Solo menciptakan mesin pembuat tepung ikan dari limbah ikan.Mesin itu diciptakan untuk mendukung kemandirian pakan ikan bagi kelompok pembudidaya ikan Desa Berahan Kulon, Kecamatan Wedung, Kabupaten Demak.Pelaksanaan PKM ini, diketuai Dr Eng Herman Saputro dengan anggota Dr Laila Fitriana, Budi Siswanto, Ir.l Husin Bugis, dan Ranto, yang dilaksanakan pada, Jumat (16/10/2020) lalu.Baca juga: Guru Besar FPIK IPB Temukan Alat Pemisah Daging dan Duri IkanSelain bekerjasama dengan kelompok pembudidaya ikan, GR ECCEE UNS turut menggandeng Energy Convertion and Combustion Laboratory (ECCL) UNS untuk melibatkan mahasiswa Program Studi (Prodi) Pendidikan Teknik Mesin Fakultas Keguruan dan Ilmu Pendidikan (FKIP) UNS dalam hal inovasi dan desain mesin pembuat tepung ikan.“Mesin ini memanfaatkan limbah ikan menjadi tepung ikan. Seperti diketahui bersama bahwa harga pakan ikan saat ini menjadi variabel utama bagi pelaku usaha pembudidayaan ikan,” ujar Dr Herman Saputro, Kamis (22/10/2020). Ia menerangkan, gagasan pembuatan mesin pembuat tepung ikan diawali dari observasi dan diskusi bersama Kepala Desa (Kades) Berahan Kulon.Selanjutnya, GR ECCEE UNS menindaklanjuti hasil observasi tersebut dengan melakukan identifikasi masalah dan pemetaan potensi yang ada di Desa Berahan Kulon.Baca juga: Unipas Ajak Warga Banyuasri Budidaya Ikan Dalam EmberTemuan yang didapat GR ECCEE UNS adalah limbah ikan yang mencapai 100-150 kg per hari yang belum termanfaatkan dan adanya masalah ketersediaan pakan ikan bagi kelompok pembudidaya ikan di Desa Berahan Kulon.“Hasil diskusi bersama antara GR ECCEE UNS, kades, dan kelompok pembudidaya ikan sebagai UMKM mitra sepakat untuk melakukan kegiatan pemberdayaan kelompok nelayan dalam pemanfaatan limbah ikan menjadi tepung ikan,” terangnya.Desain mesin pembuat tepung disesuaikan dengan karakteristik bahan baku yang berupa limbah ikan dan ketersediaan energi penggerak di Desa Berahan Kulon.Keunggulan dari mesin ini adalah mampu menyelesaikan tahapan pembuatan tepung ikan, mulai dari tahap awal sampai akhir, dengan mulai mencacah hingga menghaluskan tepung ikan.Baca juga: UMI Kembangkan Usaha PPUPIK Berbasis Akuakultur Terpadu di PangkepPenghalusan tepung ikan dapat dilakukan sebab mesin ini dilengkapi dengan mekanisme pengayakan yang dioperasikan secara terintegrasi untuk menghasilkan tepung dalam dua bentuk ukuran yang berbeda.Dengan keberadaan mesin ini, Herman Saputro berharap dapat membantu ketersediaan pakan ikan bagi kelompok pembudidaya ikan di desa ini. Saat ini harga pakan ikan di pasaran berkisar Rp 12 ribu sampai Rp 15 ribu per kilogram, sehingga pakan ternak menjadi variable penting dalam budidaya ikan. Dari perhitungan biaya produksi tepung ikan dengan memanfaatkan limbah ikan membutuhkan ongkos Rp 5 ribu sampai Rp 6 ribu per kilogram. Jika berjalan dengan baik, Dr Herman Saputro mengatakan akan ada penghematan yang sangat signifikan. Penghematan tersebut dapat meningkatkan penghasilan kelompok pembudidaya ikan.Salah satu anggota kelompok pembudidaya ikan, Imam, mengucapkan terima kasih atas kontribusi dan perhatian yang diberikan. Ia mengharapkan kegiatan in dapat rutin dilakukan, terutama tentang mesin-mesin lain yang mendukung budidaya ikan dan tambak. “Terima kasih UNS sudah menggelar program kemitraan ini. Kami sangat terbantu dan semoga bisa rutin dilakukan kedepannya," tandasnya. Sumber: Tribun News ...
XL Axiata Bikin Solusi IoT untuk Bantu Tingkatkan Kualitas Budidaya Ikan dan Udang
Teknologi

XL Axiata Bikin Solusi IoT untuk Bantu Tingkatkan Kualitas Budidaya Ikan dan Udang

XL Axiata mengembangkan solusi IoT untuk membantu pelaku usaha di berbagai segmen. Salah satunya untuk kalangan petani tambak, XL Axiata membuat solusi precision farming bernama “XL Smart Aquaculture”.Solusi ini bertujuan untuk meningkatkan kualitas budidaya ikan dan udang. Solusi ini telah diterapkan sejumlah petani tambak ikan kerapu dan udang di Jawa Timur.Baca juga: Maksimalkan Budidaya Ikan, Mahasiswa Kembangkan Aplikasi SahabatambakDalam keterangannya disebutkan solusi ini terbukti mampu meningkatkan produktivitas rata-rata sebesar 20 persen.Chief Enterprise & SME Officer XL Axiata Feby Sallyanto, mengatakan kehadiran solusi seiring dengan Indonesia yang merupakan negara kepulauan terbesar di dunia. Sayangnya Indonesia hanya menempati posisi keempat negara penghasil udang di dunia.Rupanya, tantangan terbesar yang dihadapi petambak Indonesia dalam meningkatkan produksi budidaya dalam negeri adalah metode budidaya konvensional yang belum banyak mendapatkan sentuhan teknologi dan minimnya data historis, dan berbagai masalah lainnya."XL Smart Aquaculture memungkinkan metode budidaya dengan teknologi berbasis data yang presisi," kata Feby dalam keterangan resmi XL Axiata.Dibantu Machine LearningXL Axiata menghadirkan solusi IoT untuk mendukung hasil tambak ikan dan udang jadi lebih maksimal (Foto: XL Axiata)Solusi “XL Smart Aquaculture” bekerja dengan cara mengambil dan mengolah data kualitas air secara otomatis dengan memadukan IoT dan machine learning. Dengan demikian, petambak dapat langsung mengetahui keadaan tambak yang dikelolanya.Variabel penting yang dimonitor pada XL Smart Aquaculture ini adalah kondisi air di tambak. Dengan mengetahui data keadaan tambak, mereka dapat melakukan berbagai hal seperti mencegah penyakit, menghindari pemberian pakan yang berlebihan, dan mengoptimalkan kapasitas tambak. Manfaat lain dari solusi ini adalah kemudahan dalam membaca kondisi tambak.Penggunaan MudahPenggunaan XL Smart Aquaculture cukup mudah, petambak hanya perlu mencelupkan sensor kualitas air, kemudian data akan secara otomatis muncul di layar smartphone atau tablet. Petambak juga dapat memisahkan data tiap tambak, sehingga luas tambak 5.000 m2 hanya membutuhkan 1 unit alat.Baca juga: Seberapa Penting Digitalisasi dalam Data Budidaya?Kurangi Kegagalan PanenSelain itu, sistem pada solusi ini memudahkan pengguna untuk melakukan input data tambak, baik dari sisi kualitas air, data pakan, data panen, ataupun data penyakit.“Metode budidaya dengan data akurat dapat mencegah dan menanggulangi masalah yang ada di perairan. Perlakuan yang tepat bagi komoditas yang dibudidayakan dapat meningkatkan produktivitas budidaya dengan kualitas hasil panen yang sesuai dengan permintaan pasar. Solusi ini juga mengurangi tingkat kegagalan panen," kata Feby.Solusi ini dikembangkan untuk dapat tetap bekerja secara maksimal disaat tidak mendapat sinyal seluler. Selain itu, solusi ini dapat ditambahkan fitur-fitur atau alat lainnya sesuai kebutuhan.Baca juga: Budidaya Vaname Intensif di Bak Beton (VITON)Saat ini XL Smart Aquaculture telah diterapkan oleh para petani tambak di Pacitan dan Situbondo.Di usianya yang ke-24, XL Axiata memperkuat komitmen untuk selalu mendukung pembangunan nasional melalui bidang telematika, termasuk dengan mendorong pemanfaatan layanan-layanan inovatif serta IoT untuk memajukan dunia usaha termasuk di kalangan UMKM.Sumber: Liputan 6 ...
A successful Case of Split Pond Recirculation Aquaculture System (SP-RAS) for Snakehead Fish Farming in Andhra Pradesh of India
Teknologi

A successful Case of Split Pond Recirculation Aquaculture System (SP-RAS) for Snakehead Fish Farming in Andhra Pradesh of India

The air-breathing snakehead fish (Channa striata) commonly called stripped murrel in India, is one of the most popular freshwater fishes. Live snakehead fish fetches a stable high price between INR 400-500/kg (US $6-8/kg) in different retail markets. Murrel was officially declared as the 'state fish' for Telangana in 2016, which focused upon the promotion of murrel farming and conserving the indigenous aquatic diversity in the water bodies of Telangana.Considering the need to bring more high value species into aquaculture in India, Uno Feeds, one of India's largest extruded fish feed manufacturers, has entered into a strategic co-operation with Nutriera Group, the biggest integrated aquafeed technology solution provider, to bring the technology for domestication and grow out of snakehead fish in India. Since 2015, Uno Feeds has set up a dedicated hatchery and research facility for breeding snakehead in Bhimavaram, Andhra Pradesh with the assistance of the Nutriera team.From 2016 to 2019, the commercial scale artificial breeding of snakehead fish was successfully carried out at this facility and the fry was gradually weaned to take specially formulated extruded snakehead feed. The grow-out phase of these weaned seeds was also carried out in several farming areas in West Godavari, East Godavari and Krishna District, widely spread over 100 acres with a 100 percent planned increase in farmed area annually. Throughout the past five years, snakehead fish intensive farming at Uno Feeds has also encountered some farm-end difficulties, such as limited fresh water resources, microcystis bloom, extreme high temperature and severe fish diseases like water moulds and Epizootic Ulcerative Syndrome outbreak during the winter season.Snakehead fish is a typical carnivorous fish with high level feed nutrition requirements. As the result of the unavailability of the natural water resources for water exchange, the continuous feeding and fish feces bring about worsening water quality, and then microcystis proliferation occurs during farming under the conditions of higher temperature. Fish liver was also noted to be especially vulnerable after encountering with microcystin breakout, which became yellowed and fragile.Indian Major Carps (IMC)India is the second largest aquaculture producer in the world after China, and India constitutes about five percent of global fish production. Indian major carps (IMC) catla (Catla catla), rohu (Labeo rohita) and mrigal (Cirrhinus mrigala), the mainstay of freshwater aquaculture species, enjoy a prime position in the Indian aquaculture scenario with a most classical polyculture system and contribute around 80 percent of the total freshwater aquaculture production in India.Rohu is the most important component of the IMC polyculture system, as it has been reported as both a plankton feeder in adults and zooplankton feeder in fry and fingerlings. Rohu also is a periphyton feeder in substrate base systems (Sandip Majumder, 2016). It has also been reported by Rahman (2008) that, under culture conditions when rohu was fed with formulated feeds, they shifted their natural food preference from phytoplankton to zooplankton.Monjurul Islam (2014) suggested that rohu fingerlings could be reared in coastal water with salinity of up to six percent with a 100 percent survival rate and up to four percent salinity with a similar growth rate as with freshwater. Catla is the second most important species after rohu, used as the surface feeder component in IMC culture systems, as a surface and midwater feeder. Adults mainly feed on zooplankton using large gill rakers, as well as a considerable share of algal and plant material.Mrigal, a bottom detritus and plankton eater, forms an important component of polyculture systems with other species of major carps in India. Mrigal has also been introduced to China, whose fingerlings play an important role acting as the live forage fish for the commercial farming of Mandarin fish (Siniperca chuatsi) before the practice of commercial feeds.As the result of the special biology and feeding habits mentioned above and more than 30 years of farming history, bag feeding (mash feed) is still the dominant feeding model for the IMC polyculture system which comprises of around 85 percent rohu, 10 percent catla and five percent mrigal. De-oiled rice bran (DOB) is used as the principal feed ingredient, followed by groundnut cake and cottonseed cake etc.Split Pond Recirculation Aquaculture Systems (SP-RAS)From the above discussion, we can figure out that the water from ponds of snakehead fish and IMC might be complimentary for each other's farming performance, these methods also can make the best use of available water resources. Considering fish biology such as feeding habits, nutrition requirements, oxygen tolerances, growth rates and economic values of the two species (snakehead fish and rohu), we cannot stock the two species in a same pond as a form of polyculture.Based on the comparative analysis of snakehead fish and IMC, a farming concept that has combined snakehead fish and IMC farming, is Split Pond Recirculation Aquaculture Systems. After some searching and analysis, we selected some fishponds located in Machilipatnam, Andhra Pradesh as the demonstration area to carry out the recirculating aquaculture trials.SP-RAS designIn the Split Pond Recirculation Aquaculture System, the eutrophied water was pumped from a 0.6ha snakehead fish pond into a 14ha IMC pond at the downwind. Meanwhile, the water from the IMC pond automatically flowed into the snakehead fishpond at upwind through the underground PVC pipe. The water exchange frequency was lower in the first stocking month, changed two-to-three times a week with 30 percent exchange rate, followed by one-to-twice per day, depending upon the water quality status and fish conditions in the mid-to-late crop. In addition, various health products were used to optimise fish health regularly. Performance of SP-RASA 5HP engine was used as the water flow driver. It was installed at the downwind corner of the snakehead fishpond and could pump the water from the snakehead fishpond into the rohu pond. Meanwhile the rohu pond water can flow into the snakehead fishpond to achieve the recirculation purposes through the underground PVC tube.After one month of implementing this water circulation system, the water quality of the snakehead fishpond was much better than before. As evidence of this, the microcystis density was diluted distinctly more. Furthermore, the bottom black sludge thickness was reduced from 30cm to 20cm within one month of implementation of the system. Fish appetite also returned to their normal voracious status after their liver conditions recovered to normal with the help of functional health care products LiverGuard and AyurGuard (mixing with feed 0.5-1% dosage, supplied twice a week).Water quality parameters varied between the two ponds when running the SP-RAS. It was found that IMC pond water quality was better than snakehead fishponds consistently through this trial.Snakehead fish growth performance and feed conversion ratio (FCR) is shown in the Graph 1. Before running SP-RAS, the culture environment was deteriorated with microcystis bloom resulting in fish with sub-healthy conditions. This led to poor feed utilization levels. After running the recirculation system, accompanied with proper health control solutions, after one month, fish health conditions and feed utilisation were improved significantly.The prospect of SP-RASBased on the successful practice, one can easily come to a conclusion that the SP-RAS can improve the farming performance of IMC and snakehead. It can also reduce the water usage and assist in the implementation of zero waste-water discharge. This form of polyculture helps to develop global aquaculture with a minimised environmental footprint as it is an environment-friendly farming practice which also can be used for other species such as Penaeus vannamei and IMC, Asian seabass and IMC, for example.The China-ASEAN Fisheries Resources Conservation and Exploitation Fund is supporting more researches on novel farming practices with suitable stocking density and environment influence, as well as application of farm care product and functional feeds for SP-RAS.Source: Aquafeed.co.uk ...
Feeding Systems for Fish Farms and RAS
Teknologi

Feeding Systems for Fish Farms and RAS

Let's do a little history. The concept of automatic feeding was born and developed in Norway in the early 1980s. The first equipment was developed for sea cage feeding and was very basic. This equipment consisted of a hopper with a capacity of less than 200kg of processing power, a blower to send the feed to the cages and an auger screw to drive the feed from the silo.Over the years, the evolution of technology and the demand for equipment with greater performance led to new solutions appearing on the market such as revolver type feed distributors and software that allowed for greater control over feeding.These centralised systems consist of a central station where the silos and all the (automatic) dosing, distribution and control elements are located. The distribution of the feed to the different tanks is done by means of a fluid (typically air in the pneumatic systems) that flows through pipes.Early in this decade, with the evolution of robotics and artificial intelligence, new power feeding systems have been fully designed and optimised for land-based and RAS systems to emerge from.SilosSilos, as necessary tools for safe feed storage, vary in number and capacity according to the needs of the aquaculture company using them. They can be manufactured in various types of material (stainless/galvanised steel, fiberglass, polyethylene, etc) and must be certified for food purposes. They can also be standard or custom-made to cater to the clients needs. An angle at the bottom of the silo ensuring that the feed falls easily is recommended.Also read: Automatic Submersible Fish Cage Systems Counter Weather, Surface ProblemsDoserTwo dosing systems are usually used for feed dosage: Gravimetric and volumetric.1. Gravimetric systems are based on weighing the doses by means of one or more electronic load cells. The only unit of measurement is weight2. In volumetric systems the dosage is made according to the volume. In such systems, it is essential to calibrate the dosing element according to the type and size of feed to be used. It is necessary to establish what quantity of mass the dosing element has to dose in a defined period of time. When feed and batch are changed calibration should be carried out.Depending on the manufacturer, different types of volumetric dosing units can be found. The most common ones are dosers and auger screws. The auger screw-based system is the most widely adopted to achieve accurate dosing of feed from the hopper. The very thrust of the auger is what makes the precise amount fall into an intermediate hopper, and it is in such a compartment where the various mixtures from several hoppers (up to four) converge to achieve the feed mixture defined by the fish farmer.This functionality allows different sizes of pellets and/or types of feed to be included in one dosage at the same time in a certain proportion. A rotary valve or shutoff located downstream of the intermediate hopper allows the already dosed feed to be regularly introduced into the feed line, avoiding clogging.Also read: OptiFarm - Optimal Water Quality and Healthy Fish On LandSelectorThe selector is the device that aims to distribute the feed to the different tanks by selecting an outlet, which is linked to the tank by means of an HDPE pipe.Here we find two types of selectors:1. The 'revolver', a system wherein the outlets are placed in a circle and the selection of the mouth is done by a motor with a reducer2. The 'matrix', where the outputs are placed in a matrixial way and the selection of the port is done by two servomotors, one on the X axis and the other on the Y axis.Advantages of matrix vs revolverThese are the main advantages of matrix selectors:- More tanks: Taking a pipe diameter of 32mm as a reference, if we have 60 outlets on a revolver in a matrix system, we will have 180 outlets. Less space also means to solution is more robust- Increased speed: The movement in the revolver mechanisms is rotary while in the matrix system it can follow the X or Y axis, obtaining a speed of displacement between outputs up to three times faster- Low maintenance: Less maintenance is required due to the unique design.Feed transfer pipeThe pipe used to deliver the feed from the selector to the distributor is usually made of HDPE to increase its durability against abrasion wear. The pipe must have a high enough section to minimise the pressure loss and to prevent the feed from traveling at such high speeds that could it could deteriorate in quality. Another important point is to avoid sharp bends in its installation; the piping should be as straight as possible.Control systems: PLCTo control all the elements of the feeding system, PLCs are used together with frequency variators that allow modifying the rotation speeds of dosers and blowers according to the quantity requested and the distance that the feed has to travel to the feeding point. The handling of these parameters programmed from the software means that the distribution of the feed is optimised in terms of quantity and time without damaging the pellet.The new feeding systems also allow to integrate oxygen sensors that automatically adapt feeding according to the oxygen level in the tank, temperature sensors, pH and any other parameters that need to be monitored.Also read: CPF Builds “Aquaculture 5.0” Shrimp Farm In The USABlowerBlowers are the devices that generate the fluid (air) used to transfer the feed from the dosing components to the tanks. Transportation must be done as smoothly as possible to avoid damage to the feed, but at the same time to avoid clogging the pipes that carry the feed.In order to control the flow of air into the pipe and, thus, control the speed at which the feed flows through the pipe, frequency variators are used. With these variators, the speed of rotation is regulated. An air cooler and/or dryer is usually installed at the blower outlet to prevent damage to the feed due to the temperature the air reaches when compressed.Disperser: SpreaderThe spreader is used to disperse the food in the tank. This is located at the end of the pipe that brings the food. Its main function, besides throwing the pellet, is to distribute it in a homogeneous way.SoftwareAs important as having a feeding system is, having a program that allows us to manage all the feeding parameters, so that we can manage feeding plans tailored to the fish farmer and integrate it with the farm management software is also vital. Integration with mobile devices such as smartphones or tablets is another requirement that any feeding system should offer.Why choose an automatic feeding system?The implementation of this type of system provides a number of benefits:- Improved feed conversion ratio- Decrease in size dispersion- Increased growth rates- Reduction of feed waste- Significant savings in manpower- Low maintenance costs- Programming and total control- Monitoring by computer, smartphone or tablet- Software can be integrated with the farm management program- Integration of sensors (dissolved oxygen, temperature, pH, etc.)- Feed and batch traceabilitySource: Aquafeed.co.uk ...
Maksimalkan Budidaya Ikan, Mahasiswa Kembangkan Aplikasi Sahabatambak
Teknologi

Maksimalkan Budidaya Ikan, Mahasiswa Kembangkan Aplikasi Sahabatambak

Salah satu anggota tim Sahabatambak, Rifky Ari Yunanto menunjukkan aplikasi Sahabatambak yang dapat memonitor kualitas air tambak. - Ist/Dok. Humas UNYSekelompok mahasiswa Universitas Negeri Yogyakarta (UNY) mengembangkan inovasi teknologi yang dapat memaksimalkan budidaya ikan. Melalui aplikasi yang bernama Sahabatambak, petani ikan dapat memantau kondisi air tambak sehingga kualitas panen ikan bisa meningkat.Sejumlah mahasiswa yang mengembangkan Smart Pond Management System itu terdiri dari berbagai program studi. Mereka antara lain Muhlisun Nur Hidayah dan Rifky Ari Yunanto dari Prodi Pendidikan Teknik Informatika, Ardi Jati Nugroho Putro dari Prodi Pendidikan Teknik Mesin, Yuliari Suprihatin dari Prodi Kimia, dan Intan Diah Kusuma dari Prodi Pendidikan Teknik Boga.Mereka mengembangkan sistem monitoring suhu, pH, dan kadar oksigen terhadap air tambak lantaran komponen-komponen itu sangat penting dan dapat memengaruhi kondisi ikan di tambak. Ada dua instrumen dalam inovasi ini, yaitu kapal dan aplikasi.Baca juga: Mahasiswa IPB Buat Aplikasi Si Cerdik untuk Deteksi Kesegaran IkanMenurut Muhlisun, kapal Sahabatambak berfungsi untuk mendapatkan data kondisi tambak, sedangkan aplikasi berfungsi untuk menampilkan hasil analisis data sekaligus solusi "Harapannya dengan menggunakan Sahabatambak, mitra dapat meningkatkan kualitas dan hasil panen ikan sehingga omzet mitra dapat lebih maksimal," kata Muhlisun pada Senin (19/10/2020).Saat ini di Kabupaten Sleman terdapat 637 kelompok pembudidaya ikan. Pada 2019, produksi budidaya perikanan konsumsi ditargetkan sebanyak menjadi 62.000 ton. Namun hingga saat ini hasil budidaya ikan di Kabupaten Sleman hanya bisa mencapai kurang dari 75% dari target yang telah ditetapkan. Sementara itu, omzet yang didapatkan juga tidak bisa maksimal karena ikan bisa mengalami kematian jika kondisi air tambak tidak dimonitor kualitasnya. Kondisi itulah yang melatarbelakangi kelima mahasiswa ini mengembangkan Sahabatambak.Anggota tim lain, Ardi menerangkan dari aplikasi ini petambak dapat memperoleh hasil analisis dari sensor pada kapal. Kapalnya sendiri berbahan plat dengan penggerak motor DC dan bersumber pada energi sel surya. Kapal ini dipasangi sejumlah sensor.Baca juga: Aplikasi untuk Menjaga dan Merawat Ekosistem Ikan Hias di Indonesia"Aplikasi Sahabatambak akan mengolah dan menganalisis data yang didapat dari sensor pada kapal. Sensor tersebut adalah sensor kadar oksigen, sensor suhu, sensor ultrasonik, dan sensor pH. Data dari sensor ini dihubungkan dengan big data yang berisi informasi soal kondisi air serta cara penanganan yang tepat," terangnya.Big data itu, lanjut dia, terhubung langsung dengan aplikasi Sahabatambak kemudian akan memberikan informasi tentang cara penanganan yang tepat apabila suhu, kadar oksigen, dan pH air berada di bawah atau di atas batas normal. Karya ini berhasil meraih dana penelitian dari Dirjen Dikti Kemdikbud dalam Program Kreativitas Mahasiswa bidang Teknologi tahun 2020.Sumber: Harian Jogja ...
OptiFarm - Optimal Water Quality and Healthy Fish On Land
Teknologi

OptiFarm - Optimal Water Quality and Healthy Fish On Land

The main advantage of a RAS facility is the formation of an aquatic environment that you – and not mother nature – can determine the quality of it. To be able to have full control of that environment, the right choices have to be made at every stage, from choice of technology to the individual elements of the facility, and to how the facility will work as a whole.A specialist Norwegian company, ScaleAQLandbased(formerly known as AquaOptima) builds turnkey facilities that guarantee optimal water quality for fish production. They believe that water quality is key, because clean water provides the best possible growing conditions for the fish."OptiFarm is our concept for a complete RAS facility," says Senior Consultant and RAS expert, Astrid Buran Holan from ScaleAQ. 'It's designed for optimum fish health and growth. Every single component in the facility is carefully selected for the same purpose. The OptiFarm system gives efficient automatic cleaning of tanks, good water flow speed and optimal water quality.'Also read: The Inside Story: CP Foods Move to Total Shrimp RASRemoving particlesParticles such as fish faeces and uneaten feed quickly dissolve and pose a threat to water quality as they can affect the treatment process and increase the risk of sludge build-up. The latter is one of the RAS industry's biggest problems, and often the reason why H2S accumulates.To create and maintain optimal water quality, all particles in the water – even the smallest – have to be removed, and as quickly as possible."We want to provide the best possible solutions for fish farmers, and to make their lives easier. We believe in removing all the particles from the water – right down to the smallest – and as quickly as possible," says Holan.Doing so is easy if the right RAS technology is chosen, along with proper dimensioning and operation of the facility."If the health and welfare of the fish in the facility are poor, there is little chance of the facility making a profit,' Holan adds. 'Treating the water efficiently provides a high degree of fish welfare and production. An even distribution of fish throughout the full volume of the tank is also important to their health. And that can only be achieved if the water quality and hydrodynamics are correct in the whole tank.'Also read: Feed and Faeces: The Challenges of RAS ProductionSolid technologyScaleAQ has chosen high quality, well-proven technology for its RAS system: technology that is already in use at the hundreds of facilities AquaOptima has delivered all over the world.These are some of the key components in ScaleAQ's concept for a complete RAS facility, OptiFarm:OptiTrapOptiTrap is a system for efficient removal of particles in fish farming tanks. OptiTrap ensures that the biggest particles are quickly removed from the water. OptiTrap takes out up to 95 percent of the particles that could otherwise form sediment from the water."One of the major strengths of AquaOptima is our ability to remove sedimentary particles from the tank – feed that has not been eaten and faeces – in one process. That means that the side and central channels collect far fewer particles."Those same particles create unstable microbial conditions, as they are the ideal food for bacteria. There is also a major benefit to installing protein skimmers if ozone is introduced into the water loops to avoid sludge accumulation.Correct feeding and regular cleaning of the pipes leading from OptiTrap are all that are needed to keep the system running – something that is a lot simpler than other methods that often require meticulous cleaning and maintenance."The alternative to RAS is a traditional through-flow facility, where you have large amounts of new water coming into your farm. That means that you can lose control of the water quality in the fish tanks. It also costs a lot to heat the water," explains Holan. Also read: Clean Energy in Aquaculture: Using Technology to Grow Healthy FishOptiFlowOptiFlow is a system for self-cleaning tanks. It consists of intake pipes, flow boosters and sensors to measure water flow in addition to the actual fish farming tank, OptiTank. The system is controlled in a manner that keeps the tank clean and the fish healthy."The hydraulic in the tank is important to provide the optimum environment for fish growth and health, and to ensure they live in conditions that do not cause them stress or discomfort. All the choices we take are designed to create the best possible growth conditions for the fish – from the colour of the tank, the size and internal surface, to the outlet and water intake," stresses Holan.AquaOptima also ensures that the fish are kept in an environment they perceive as natural."We have worked with farms of all sizes and most breeds of farmed fish in the world – and we know how to achieve the perfect tank hydraulics for any type of facility."OptiTankScaleAQ uses octagonal tanks, because they provide optimal tank hydraulics."Maintaining optimal water quality in an octagonal tank is simple compared to the alternatives," says Holan. Along with OptiFlow, octagonal tanks ensure good water quality, high oxygen levels and perfect flow throughout the tank.Also read: Aquaculture Technology Provider UMITRON Launches Fish Appetite Index (FAI), The World's First Real-Time Ocean-Based Fish Appetite Detection System Improved flow patternsScaleAQ has recently completed a CFD modelling research project, designed to show what happens with flow patterns in the tank, turbulence and rotation speed when tank diameter is increased in relation to the depth.The results showed that a broader tank with the same volume gives better flow patterns in the tank. Fish in the tank thrive better with consistent, optimum hydrodynamics. Kinetic energy also shows that there is less turbulence in wider tanks, which in turn means better conditions for the fish in wide and shallow tanks. The project was a partnership with OverhallaBetongbygg, and supported by Innovation Norway.OptiFarm also consists of a wide range of additional technology and smart solutions. Most of the preferred technology has been selected to provide the best possible environment for the fish. The RAS facility has to be designed to make it easy to produce fish in a safe, predictable manner – based on the conditions prevalent where the facility is to be built."Our solutions avoid having a whole chain of tanks on the same water source, but use sections consisting of four to six tanks. This way, if one section becomes infected, the spread is automatically limited. We also design the facilities with safe solutions for allowing personnel to pass from one section to another."All RAS facilities have to be built in a unique location with their own requirements for use of space, water supply and logistics, 'Holan points out. 'It's important that such factors have to be dealt with according to long experience, a high level of expertise and in close consultation with the farmer.'Facilities are dimensioned according to the conditions they are to exist in, which have to be realistic to achieve profitable operation and good fish health.It is also important to feed correctly according to the dimensioning of the facility. It can be tempting to over-feed – but that can also create problems. If the facility is not dimensioned correctly, tank hydraulics can be affected, which can also mean poorer water quality and thus poorer fish welfare.About ScaleAQLandbasedScaleAQLandbased is a Norwegian supplier of turnkey RAS facilities. As part of ScaleAQ, they can deliver turnkey projects at any size. Their world-leading position in aquaculture also enables them to deliver the latest in innovations from one of the world's leading communities in aquaculture technology. Their staff includes biologists, fish farmers and engineers who have designed hundreds of RAS facilities.Source: Aquafeed.co.uk ...
Guru Besar FPIK IPB Temukan Alat Pemisah Daging dan Duri Ikan
Teknologi

Guru Besar FPIK IPB Temukan Alat Pemisah Daging dan Duri Ikan

Guru Besar Departemen Pemanfaatan Sumberdaya Perikanan, Fakultas Perikanan dan Ilmu Kelautan, IPB University, Prof Dr Ari Purbayanto kembali berhasil menemukan karya terbaru.Prof Dr Ari Purbayanto berhasil menemukan mesin Suritech yang merupakan mesin pemisah daging dan duri ikan.Mesin Suritech pada awalnya diinisiasi pada tahun 2004 bersama timnya saat melaksanakan penelitian potensi hasil tangkapan sampingan pukat udang di laut Arafura.Penelitian tersebut merupakan kerjasama PT Sucofindo dan Dinas Kelautan dan Perikanan Papua.“Saya sebagai team leader kegiatan penelitian. Kami kaget ketika mengetahui potensi bycatch atau hasil sampingan yang meliputi ikan, pelagis kecil dan ikan demersal, yang umumnya memiliki nilai ekonomi rendah.”Baca juga: Usaha Budidaya Ikan Bandeng Semi Intensif Agar Produksi Meningkat“Sebanyak 80 persen hasil samping ini dibuang kembali ke laut dalam kondisi mati. Estimasi kami potensi bycatch pukat udang di Arafura mencapai 132.168 ton per tahun,” jelas Ari Purbayanto yang merupakan alumni FPIK IPB angkatan 21.Melihat potensi tersebut, Prof Ari memutuskan membuat mesin Suritech untuk mengolah hasil samping tersebut.Suritech diproduksi dan dipasarkan secara komersial oleh PT Samudera Teknik Mandiri. Mesin Suritech adalah mesin yang digunakan untuk memisahkan daging dan duri ikan.Setelah mendapat paten pada 17 Mei 2006, mesin Suritech mampu meningkatkan kapasitas produksi hingga 10 kali lipat. Di samping itu, mesin ini juga mampu menghasilkan produk higienis dan bersih tanpa adanya tulang maupun duri ikan.Baca juga: Dosen IPB University Ciptakan Inovasi Garam Sehat dari Rumput Laut“Efisiensi untuk mendapatkan daging lumat (surimi) sangat tinggi yakni 95 persen dan sampahnya hanya lima persen,” ujar dosen IPB University yang mendapatkan penghargaan Rintisan Teknologi Industri (RINTEK) oleh Presiden RI pada tanggal 20 Desember 2010 ini.Bukan hanya itu saja, Prof Ari juga menyampaikan jika mesin tersebut bisa digunakan untuk semua jenis ikan bahkan ikan bandeng yang mengandung banyak tulang.Mesin Suritech didesain untuk bisa digunakan pada semua jenis ikan khususnya untuk ikan ikan-kecil yang berukuran kurang dari 40 centimeter.Lantas bagaimana dengan ikan-ikan yang berukuran lebih besar?Menurut Prof Ari bukan hanya ikan kecil, ikan besar juga bisa dimasukan kedalam mesin tersebut hanya saja harus dipotong terlebih dahulu.Baca juga: Peluang Usaha Ini Menjanjikan, Kemasan Makanan dari Rumput LautMesin Suritech konsisten hadir sebagai inovasi untuk mendukung ketahanan pangan dan diversifikasi produk perikanan di Indonesia.Hingga saat ini, tercatat ada sekitar 100 unit Suritech yang telah digunakan oleh masyarakat dari Aceh hingga Papua untuk mengolah ikan menjadi surimi.“Harapannya, mesin Suritech bisa dimanfaatkan dalam kegiatan penangkapan ikan di laut untuk mengurangi kehilangan produk perikanan yang dibuang sebagai discarded bycatch yang jumlahnya di dunia jutaan ton per tahun itu,” pungkasnya.Sumber: Pojok Satu ...
Renewable Energy Could Transform Offshore Aquaculture
Teknologi

Renewable Energy Could Transform Offshore Aquaculture

Aquaculture relies on energy. And with this dependence on energy comes the responsibility of ensuring that it’s used efficiently with minimal environmental impact. Some farms are now investigating this with the help of renewable energy.Norwegian firm Moss Maritime is developing a floating solar project to power small remote islands, utility grids, oil and gas operations and fish farms. It’s a potential fit for ambitious Norwegian companies aiming to operate massive offshore salmon farms, sited many miles from shore.“Farms located far out at sea will consume more energy and connecting them to an onshore electricity grid will become increasingly challenging,” Alexander Minge Thøgersen, VP-engineering at Moss Marime told the Advocate. “Nevertheless, offshore fish farms need power for their operations and must be able to provide clean power in remote locations. We believe there may be a potential market for renewable energy in Norway and are looking at how it could be integrated.”Also read: Clean Energy in Aquaculture: Using Technology to Grow Healthy FishMoss Maritime’s project is based on a concept that’s designed for easy fabrication, transportation and installation. It will include several floating structures, a conventional mooring system and solar panels that will be towed out to a farm site. Hopes are high that it will positively impact fish farms’ environmental footprints and provide cheaper power.“Farms will have to be designed to receive power from renewable energy sources,” said Thøgersen. “How exposed they are, and how much energy they require, will also come into play. They shouldn’t have to make significant adjustments, but this will depend on their existing power supply, such as whether they have sea cables or generators. The major challenge will be to develop a concept that’s robust and competitive with alternative solutions but we’re focusing on this through an ongoing development project with Norwegian energy firm Equinor.”Following a simplified model test at the Norwegian University of Science and Technology (NTNU) in Trondheim, Moss Maritime will be conducting a more extensive test on motion behavior. The project’s development phase finishes at the end of this year, and a full-size version will hopefully be demonstrated next year.Renewable energy solutions are likely to significantly cut emissions on a fish farm, according to Helleik L. Syse of the University of Stavanger in Norway. Relying on multiple sources, for example a combination of wind turbines and photovoltaic panels with a diesel generator as backup, is the best way to guarantee a stable system, he said.“In the Northern and Southern Hemispheres there will normally be enough sun in the spring and summer but not enough in the fall and winter,” said Syse. “However, the average wind speed is normally higher then, so combining wind and solar would ensure fairly stable energy production year-round.”“But there will be days or weeks with almost no sun and wind, so to tackle those periods one could install batteries, which have dropped substantially in price and will continue to do so,” he continued. “Keeping a diesel generator as back up is good and often cost-effective. In future there may also be commercially available wave energy converters, which could add a third source of renewable energy generation.”Renewable EnergyBecause Norwegian salmon farms operate in the far north, where sun is limited in the winter, other renewable energy methods like wind power could be used for supplementation. Photo by Helleik L. Syse, courtesy of Grieg Seafood.Professor Dave Little of the University of Stirling in the UK believes that there will be many interesting drivers when it comes to renewable energy, leading to a significant level of sustainable intensification. The suitability of a renewable energy system, however, depends on the amount of available sunlight, amount of energy a farm requires and location, he said.“A farm may be a remote offshore facility that’s a long way from the grid or require a certain amount of energy so there will be different contexts requiring different solutions. But as soon as your basic energy source becomes green – a small unit connected to wave power or offshore wind power – you’re getting there,” he said.A combination of aquaculture and renewable energy could also bring economic benefits to both sectors. Dr. Maurizio Collu is an associate professor in offshore renewable energy systems at the University of Strathclyde, UK. His work on offshore, multi-purpose platforms (MPPs) – offshore systems designed to serve the purposes of more than one offshore industry – has shown that designing renewable energy systems around a large aquaculture facility is technologically and economically feasible.“The main advantage of MPPs is the possibility of sharing capital and operational costs,” he said. “A floating support structure, which constitutes a large part of capital costs, can be used as support for wind turbines, wave energy devices or tidal turbines, as breakwater for aquaculture cages or to install monitoring systems. An example of sharing operational costs might be the possibility of sharing personnel and technicians.”Also read: Energy Use in Aquaculture Pond AerationMPPs are still being tested. But Collu sees no major hurdles, provided that a thorough approach has been adopted at the start of system design. He and his colleagues are currently talking to companies that have battery storage systems to complement diesel generators. Their next step is to combine battery storage with small wind turbines or solar panels.Syse agrees that energy storage is key. One option is compressed air storage for offshore farms that use compressed air, he said, but this may be expensive to install. Batteries – preferably lithium ion (Li-Ion) batteries if energy demand is low/medium (less than 100 kW) – are likely to be cheaper, he believes, but enough space, fire safety and investments costs may make it harder to store sufficient energy.The benefits of renewable energy are also likely to be significant in light of consumer sensitivity toward food production. With more companies claiming that their products are made with 100 percent renewable energy, aquaculture may benefit commercially from this type of green label. Secondly, with increasing pressure to install cages further offshore, MPPs could also be key.But obtaining renewable energy is not without challenges, said Syse.“Intermittency is probably the biggest issue, but this can be solved by shifting the energy load, installing storage and/or having backup generation,” he said.“For MPPs, the major obstacle is from a legal or social standpoint,” said Collu. “We have legal frameworks for the installation of an offshore wind turbine, aquaculture system or offshore oil and gas system but not for MPPs.”Farms’ interest in renewable energy may be rising but Syse says that it’s also important for them to reduce their energy use first. Many farms overlook this and jump directly into figuring out how to produce the energy that they currently need, he said.Also read: Energy Use in Aquaculture Pond Aeration “Heating can be reduced by installing a heat pump. Shorter feeding hoses could reduce the energy needed to blow feed pellets out to the cages. Less unnecessary transport or switching to electric boats could also be considered,” he said.“Reducing energy use depends on how energy-intensive a farm is and that comes down to design. There is no replacement for good design whatever the source of energy. It also depends on your system and the value of your product,” said Little.Collu believes that the market for renewable energy within aquaculture is likely to grow. He envisions innovative solutions along the way.“With increasing awareness and sensitivity toward global warming, carbon emissions and sustainability, and considering the substantial technological progress of wind, solar and battery storage systems, it’s not a question of if but of when aquaculture will embrace renewable energy to access new fields and become more sustainable and green,” he said.Source:  Aquaculture Alliance ...
Probiotik dalam Akuakultur
Teknologi

Probiotik dalam Akuakultur

Penggunaan probiotik adalah salah satu langkah yang efektif untuk mengontrol imunitas ikan pada praktek akuakultur. Langkah ini juga dipertimbangkan sebagai bentuk srategi alternatif dari penggunaan vaksin dan bahan kimia.Probiotik dalam akuakultur dapat digunakan sebagai sumber nutrien yang mendorong pertumbuhan ikan, menstimulasi sistem imun ikan, meningkatkan adaptasi ikan terhadap lingkungan, dan juga dapat digunakan untuk mencegahan ikan terinfeksi penyakit yang sama. Beberapa probiotik dalam akuakultur meliputi jenis Lactobacillus, Enterococcus, Bacillus, Aromonas, Alteromonas, Arthrobacter, Bifidobacterum, Clostridium, Microbacterium, Paenibacillus, Phaebacter, Pseudoalteromonas, Pseudomonas, Rhodosporidiptium, dan Rose Vibrio.Baca juga: Bisakah Nila Jantan Alami Mengatasi Penyakit Baru?Mengapa probiotik memiliki dampak yang baik pada ikan?Mikroorganisme yang bermanfaat di dalam usus akan membatasi proses pelekatan dan penetrasi bakteri patogen ke dalam sistem pencernaan ikan. Zat yang dihasilkan oleh probiotik untuk ikan juga bisa menghasilkan enzim untuk sistem pencernaan.Probiotik untuk ikan dapat melawan bakteri patogen dengan bantuan zat besi. Bakteri patogen perlu berikatan dengan zat besi untuk bertahan hidup di dalam inangnya. Pada dasarnya, tubuh bakteri memiliki banyak gen yang terlibat dalam penyerapan zat besi, hal ini dapat berpengaruh pada virulensi bakteri tersebut. Ketika jumlah zat besi sedang rendah, bakteri mikro justru menghasilkan racun yang mampu membunuh sel inang untuk memperoleh zat besi. Sideriophores adalah zat dengan bobot molekukar ringan yang dihasilkan oleh probiotik atau kelenjar endokrin pada usus. Zat ini juga dapat mengurangi keberadaan zat besi pada bakteri patogen karena memiliki tingkat afinitas yang tinggi terhadap ion besi. Beberapa jenis bakteri memiliki reseptor yang mengandung siderophore dari bakteri lain dan ion besinya.Beli Probiotik Untuk Ikan Disini!Kegunaan probiotik dalam akuakultur lainnya adalah untuk meningkatkan imunitas, meningkatkan aktivitas makrofag, dan tingkat antibodi. Probiotik yang dapat meningkatkan imunitas inang dan resistensi terhadap penyakit ikan dan udang telah menerima banyak perhatian dari berbagai pihak selama beberapa dekade ke belakang. Secara khusus, bakteri asam laktat (lactic acid bacteria) dan strain bacillus telah digunakan secara berkala. Kedua jenis ini dapat menstimulasi respon imun yang sudah ada di dalam tubuh dan meningkatkan kemampuan ikan untuk melawan infeksi terhadap bakteri patogen. Jenis probiotik untuk ikan ini juga dapat meningkatkan kualitas air di dalam kolam, meningkatkan parameter fisik dan kimia perairan, serta mengontrol patogen dalam perairan. Penggunaan probiotik secara efektifPenggunaan probiotik dalam akuakultur yang efektif bergantung pada beberapa faktor, diantaranya seperti strain dari ragi, tingkat dosis yang digunakan, bentuk suplemen, dan durasi penggunaan probiotik itu sendiri.Penggunaan strain ragi yang cocokPemilihan strain probiotik yang potensial untuk akuakultur dilakukan berdasarkan berbagai kriteria, seperti tingkat pertumbuhan mucus, toleransi terhadap tingkat keasaman dan cairan empedu, tingkat kelulus hidupan dari asam lambung, produksi enzim ekstraselular, dan produksi anti-oxidan.Bakteri yang berperan sebagai probiotik untuk ikan, menghambat pertumbuhan patogen dan menerapkan biosekuriti (aktivitas hemolitik dan kerentanan terhadap antibiotik). Pelekatan probiotik terhadap mukosa lambung menjadi salah satu kriteria yang penting, serta menjadi prasyarat untuk penggunaan probiotik jangka panjang.Sebagai tambahan, paraprobamel atau komposisi dinding sel juga memiliki peran sebagai alternatif penggunaan antibiotik pada ikan, yang berfungsi untuk mencegah dan mengobati infeksi yang disebabkan oleh patogen. Probiotik maupun paraprobamel dapat berikatan secara langsung dengan bakteri patogen, sehingga membatasi pelekatan dan penetrasi patogen ke dalam sel usus.Probiotik dapat diaplikasikan melalui pakan dan rendamanMenambahkan probiotik ke dalam pakan ikan merupakan metode manajemen pengobatan yang paling umum. Biasanya, probiotik dalam akuakultur diaplikasikan ke dalam pakan dalam bentuk beku dan kering dan terkadang dicampur dengan lemak untuk meningkatkan suplemen di dalamnya. Probiotik juga dapat ditambahkan ke dalam kolam budidaya.Untuk larva ikan, penggunaan pakan hidup seperti artemia sudah terbukti efektif sebagai pembawa probiotik yang akan dimakan oleh larva.Baca juga: Probiotik Herbal Kreasi Mahasiswa KKN Undip, Panen Ikan Lele Hanya 1 BulanKombinasi berbagai strain mikroorganismeSebelumnya, hasil penelitian pada probiotik untuk akuakultur umumnya masih digunakan secara terbatas, namun sekarang produksi probiotik pada pakan untuk hewan akuatik sudah menjadi hal yang umum.Persiapan dalam berbagai aspek bermanfaat untuk membantu meningkatkan kinerja mikroorganisme secara luas dalam berbagai kondisi. Hal ini sama baiknya seperti bekerja dengan berbagai spesies yang sudah dikultur.Menggunakan bakteri dan spora inaktifStatus spora adalah struktur yang dibuat dari beberapa genus bakteri yang dapat menghadapi berbagai faktor lingkungan atau dampak yang disebabkan oleh bakteri. Spora membantu bakteri untuk bertahan hidup dengan cara melawan perubahan habitat yang ekstrim, seperti suhu ekstrim, kurangnya kelembapan, atau paparan kimia dan radiasi. Spora dari probiotik untuk ikan memiliki dampak positif dalam meregulasi sistem imun, dan menjaga keseimbangan mikroflora dalam usus. Secara keseluruhan, probiotik dalam akuakultur adalah langkah yang efektif karena mikroflora dalam organ usus bergantung pada kemampuan interaksi dari mikroorganisme dalam sistem pencernaan, yang dapat mempengaruhi inflamasi, metabolisme, dan imunitas.Walaupun tidak dapat langsung disimpulkan apakah probiotik lebih baik dari stimulan imun atau vaksin, manfaat dari probiotik terhadap inang dan lingkungan tidak dapat dibantah. Ini adalah salah satu metode paling potensial pada saat ini untuk mendorong imunitas, mengurangi dampak negatif pada lingkungan dan membantu mengontrol penyakit pada budidaya udang dan ikan.Ditranslasi oleh Tim MinapoliArtikel asliTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis akuakultur terintegrasi. Dengan memanfaatkan teknologi, pembudidaya dapat menemukan produk akuakultur dengan mudah dan menghemat waktu di Minapoli. Platform ini menyediakan produk-produk akuakultur dengan penawaran harga terbaik dari supplier yang terpercaya. Selain itu, bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pembudidaya yaitu Pasarmina, Infomina, dan Eventmina. ...
Anchoring Breakthrough For Aquaculture
Teknologi

Anchoring Breakthrough For Aquaculture

For the past year, tidal energy technology specialist Sustainable Marine Energy Ltd (SME), the University of Dundee, marine equipment supplier Gael Force Group, and the Scottish Aquaculture Innovation Centre (SAIC) have explored the feasibility of adapting a rock anchor approach from techniques used in marine energy sites to aquaculture.With additional support from software provider Optum, the initial testing phase has been successfully completed and the results will allow the group to accurately predict the loads and capacity that rock anchors can bear in field trials. The findings will also enable SME to reduce the amount of material required to manufacture the anchors, leading to a more cost-effective and environmentally friendly product.While traditional gravity and drag anchors made of concrete or steel are suitable for existing fish farming sites, the new technology could support the deployment of aquaculture sites in more remote, higher energy locations. The anchor forms a mechanical ground lock with the rock seabed without the need for resin or grout, and the reduction in weight also allows operators to use modestly sized, readily available vessels for deployment.Also read: CPF Builds “Aquaculture 5.0” Shrimp Farm In The USAThe group is now looking for an aquaculture partner to trial the new anchors at a fish farm, progressing towards a full-scale deployment.Adam Caton, geotechnical engineer at Sustainable Marine Energy, said:‘To date, the project has been a tremendous success, allowing us to create a more cost-effective anchoring technology that will benefit the aquaculture sector. Each partner has played a pivotal role in getting us to this point – from Dundee’s analysis of anchor behaviour, to Gael Force’s input on typical fish farm mooring loads – allowing us to create a more efficient and innovative design.‘These anchors have the potential to allow expansion of aquaculture to previously inaccessible sites with scope for large farms in energetic areas. This will bring benefits in terms of fish fitness and waste dispersal. This is a new sector for us and a market in which we are extremely interested. The next stage is to trial the technology at a fish farm alongside continued lab testing, to take another step forward in bringing the product to market.’Dr Michael Brown at the University of Dundee’s Geotechnical Engineering research group commented:‘This has been a challenging and academically interesting project that has pushed us to explore the use of novel numerical simulation techniques to capture the complex behaviour associated with different rock types, and distil this into practical approaches for cost-effective anchor design. Although rock anchors have been used for many years for classic civil engineering applications, they are often heavily over-designed and rely on grouting to bond to the rock mass. This new anchor technology is designed to be much simpler and without the need for separate grouting operations. This has resulted in the need to develop new approaches to anchor design, which we think has pushed the envelope of current rock anchor understanding.’Also read: Stealth Cleaner, Robot Pembersih Jaring Ikan di LautWhen fully developed, adoption of the new anchoring technology could allow fish and shellfish farms to look at areas which are currently unusable. Locating operations in deeper, higher energy waters could help to reduce a range of health and wellbeing risks for aquaculture species, while also increasing the industry’s capacity, by allowing the development of larger farms with a lower environmental footprint.Heather Jones, CEO of SAIC, added:‘A new approach to anchoring could be a significant development for aquaculture in Scotland and the progress made on the project so far is very encouraging. Having an alternative way of deploying sites in higher energy water could play an important role in the sector’s sustainable growth over the next decade. It builds on many of our previous projects around fish wellbeing and it is particularly pleasing to bring skills from another key area of the Scottish economy into aquaculture, underlining the potential for cross-sector collaboration and knowledge sharing.’Source:  Fish Farmer Magazine ...
Bios 44 Berguna untuk Budidaya Perikanan, dengan Memanfaatkan Limbah Cair Pabrik
Teknologi

Bios 44 Berguna untuk Budidaya Perikanan, dengan Memanfaatkan Limbah Cair Pabrik

Satuan Tugas (Satgas) Citarum Harum Sektor 4/ Majalaya Kabupaten Bandung dinilai berhasil dalam melakukan uji coba pemanfaatan cairan Bios 44. Pemanfaatan Bios 44 yang dicampur dengan limbah cair pabrik tekstil untuk budidaya perikanan yang bisa dimanfaatkan langsung oleh masyarakat dan meningkatkan ketahanan pangan dan ekonomi. Dalam uji coba pemanfaatan limbah cair pabrik itu, Selasa 18 Agustus 2020, Satgas Citarum Harum memanfaatkan dua komposisi media yang berbeda dengan menggunakan sarana akuarium sebagai tempat penampungan limbah pabrik yang diisi ikan hias.Baca juga: Kolaborasi Riset Air TawarPada media akuarium yang pertama, diisi limbah cair pabrik tanpa cairan Bios 44 dengan pH awal 7, sedangkan akuarium lainnya yang diisi limbah cair pabrik dengan menggunakan cairan Bios 44 dan pH awal 5. Satgas menggunakan empat media akuarium, dengan sampel limbah cair pabrik dari dua perusahaan yang berbeda. Salah satu pabrik yang diambil sampel limbah cairnya adalah yang pernah dicor saluran pembuangan air limbahnya oleh Satgas, sedangkan operasional satu pabrik lainnya berlangsung normal, hanya diambil sampel limbah cairnya saja.Komandan Sektor 4/Majalaya Satuan Tugas Citarum Harum Kolonel Inf Mulyono H.S., mengatakan, karena melihat hasil sampel limbah cair pabrik yang digunakan pada uji coba pemanfaatan air limbah tersebut, pabrik tekstil yang diambil sampel limbahnya itu bisa dibuka kembali penutupan saluran pembuangan limbahnya yang sebelumnya sempat dicor oleh Satgas. Ikan yang ditebar pada sampel limbah cair pabrik tersebut bisa bertahan hidup selama enam hari ini."Uji coba sampel limbah cair pabrik ini dilakukan sejak 12 Agustus 2020 lalu hingga 18 Agustus ini. Jadi sudah berlangsung enam hari uji coba sampel limbah cair pabrik ini," kata Kolonel Inf Mulyono.Baca juga: Lima Manfaat Air Rendaman Daun Ketapang Bagi Ikan CupangSelama enam hari dalam pengamatan uji coba sampel limbah cair itu, ia mengatakan ikan yang ditebar pada empat akuarium itu, semuanya masih bisa bertahan hidup, namun ada perbedaan kualitas hidup ikan di antara keempat media akuarium yang diisi sampel air limbah cair tersebut."Ikan yang hidup di sampel limbah cair pabrik yang menggunakan atau dicampur cairan Bios 44, ikannya terlihat lebih aktif dan agresif, pergerakan ikannya terlihat segar"."Berbeda dengan ikan yang hidup di sampel air limbah cair pabrik yang tak pakai cairan Bios 44, ikannya kurang agresif dan kurang aktif pergerakannya, bahkan terlihat banyak diam," tutur Kolonel Inf Mulyono.Menurutnya, melihat keberhasilan dalam ujicoba pemanfaatan cairan Bios 44 yang dicampur dengan sampel limbah cair pabrik tersebut, bisa disosialisasikan kepada masyarakat, bahwa cairan Bios 44 bisa digunakan untuk budidaya perikanan, dengan memanfaatkan limbah cair pabrik maupun air baku lainnya.Baca juga: Mencegah Penyakit Udang Berdasarkan Warna Air Tambak"Limbah cair pabrik dengan pH awal 7, setelah menggunakan cairan Bios pH-nya menjadi 5 sehingga bisa digunakan untuk budidaya perikanan," katanya.Untuk meyakinkan masyarakat bahwa cairan Bios 44 itu bisa dimanfaatkan dengan baik untuk budidaya perikanan, dengan memanfaatkan air baku yang sudah tercampur dengan limbah cair pabrik bisa melihat langsung pada ujicoba tersebut di Posko Sektor 4/Majalaya.Sumber: zonapriangan.pikiran-rakyat.comTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis akuakultur terintegrasi. Dengan memanfaatkan teknologi, pembudidaya dapat menemukan produk akuakultur dengan mudah dan menghemat waktu di Minapoli. Platform ini menyediakan produk-produk akuakultur dengan penawaran harga terbaik dari supplier yang terpercaya. Selain itu, bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pembudidaya yaitu Pasarmina, Infomina, dan Eventmina. ...
Usaha Budidaya Ikan Bandeng Semi Intensif Agar Produksi Meningkat
Teknologi

Usaha Budidaya Ikan Bandeng Semi Intensif Agar Produksi Meningkat

Usaha budidaya ikan bandeng merupakan salah satu jenis ternak yang memiliki prospek yang cukup menguntungkan. Hal ini dikarenakan bandeng merupakan jenis ikan konsumsi yang banyak diminati masyarakat.Bandeng merupakan jenis ikan laut namun juga bisa hidup di perairan payau atau danau. Berbeda dengan ikan laut lainnya, rasa bandeng cenderung netral dan tidak asin. Bandeng juga lebih gurih dengan dagingnya yang padat.Yang menarik, ikan ini juga tidak mudah hancur saat dimasak. Mungkin karena itulah bandeng juga diolah dalam bentuk ikan presto dengan duri lunak. Selain itu ikan ini bisa diolah dalam aneka bentuk masalah yang lezat.Baca juga: Budidaya Vaname Intensif di Bak Beton (VITON)Menjalankan usaha budidaya ikan bandeng semi intensif sebenarnya cukup mudah. Yang membedakannya dengan pembesaran ikan lainnya yaitu pada pemberian pakan yang bertujuan untuk mempercepat pertumbuhan bandeng. Setelah berat bandeng sudah sesuai dengan permintaan pasar, yaitu sekitar 3 sampai 4 ekor setiap kilogramnya, maka usaha ternak ikan bandeng ini sudah masuk tahap pemanenan untuk memetik hasilnya.Tahapan Penting Usaha Budidaya Ikan BandengDaya tarik bandeng sebagai ikan konsumsi membuat permintaan pasar cukup tinggi. Yang menarik, bandeng juga cukup mudah dibudidayakan. Berbeda dengan jenis ikan laut lainnya yang lebih mengandalkan hasil tangkapan nelayan.Besarnya kebutuhan pasar terhadap ikan ini memberikan peluang usaha ternak ikan bandeng. Nah, jika Anda berminat menjalankan usaha ini, berikut ini hal penting dalam budidaya ikan bandeng semi intensif yang harus diperhatikan.Persiapan Tambak IkanSebelum membudidayakan bandeng, hal pertama yang harus dilakukan adalah menyiapkan lahan tambak terlebih dahulu. Dalam melakukan pemilihan lahan sebaiknya mencari lokasi yang cukup mudah dijangkau untuk mempermudah pemeliharaan dan pemanenan.Selain itu, tambak yang baik untuk budidaya ikan bandeng sebaiknya menggunakan tekstur tanah liat dengan sedikit berpasir. Pastikan juga bahwa pH tanah berkisar antara 7 sampai 8.Baca juga: KKP-Pemkab Buleleng Resmikan Kampung Bandeng dan AgrowisataMemilih Nener Bandeng yang UnggulSetelah tambak siap, maka tahap selanjutnya adalah memilih bibit ikan bandeng. Sebaiknya pilih yang bagus dan sehat. Hal ini akan sangat berpengaruh terhadap pertumbuhan ikan bandeng ketika dipelihara secara semi intensif.Salah satu ciri nener bandeng yang sehat adalah memiliki gerakan lincah. Setelah itu penebarannya dilakukan pada pagi atau saat sore. Letakkan kantong yang berisi nener di dalam tambak dan biarkan benih keluar sendiri.Menjaga Kualitas Air dan PakanPada tahap awal usaha budidaya ikan bandeng, sebaiknya berikan nener makanan kesukaan seperti lumut, ganggang maupun klekap. Selain itu kondisi air di dalam tambak juga harus diperhatikan dengan baik agar tetap jernih.Hal ini bertujuan untuk memudahkan ikan menemukan klekap. Pada umur ikan sekitar 1 bulan atau berukuran sekitar 5 cm, lakukan penambahan pakan agar ikan bisa tumbuh lebih cepat.Mengatasi Hama dan PenyakitCuaca yang tidak menentu bisa menyebabkan ikan bandeng lebih mudah terkena penyakit dan daya tahan tubuhnya berkurang. Hal ini bisa dicegah dengan menambahkan sapoin sebanyak 20 ppm ke dalam air tambak.Baca juga: Tahapan Budidaya Ikan di Kolam TerpalDapat juga dengan menggunakan bahan alami seperti akar tuba dengan dosis 20 sampai 40 kg setiap hektar. Caranya, potong akar tuba kemudian rendam dalam ember berisi air lalu masukkan ke dalam kolam tambak secara perlahan.Itulah beberapa tahapan penting dalam usaha ternak ikan bandeng yang sangat menjanjikan. Dengan cara budidaya ikan bandeng semi intensif dan pengawasan pertumbuhannya, hasil panen dari usaha ini akan memberikan kentungan yang tidak sedikit.Sumber: harapanrakyat.comTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis akuakultur terintegrasi. Dengan memanfaatkan teknologi, pembudidaya dapat menemukan produk akuakultur dengan mudah dan menghemat waktu di Minapoli. Platform ini menyediakan produk-produk akuakultur dengan penawaran harga terbaik dari supplier yang terpercaya. Selain itu, bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pembudidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
Seberapa Penting Digitalisasi dalam Data Budidaya?
Teknologi

Seberapa Penting Digitalisasi dalam Data Budidaya?

Data dalam  budidaya merupakan salah satu aspek terpeniting dalam proses decission making atau pembuatan keputusan. Melalui data budidaya ini, pembudidaya dapat menganalisa kondisi tambak atau kolam mereka.  Pada praktiknya, kegiatan budidaya memang familiar dengan banyaknya jumlah data seiring dengan meningkatnya skala budidaya. Berbagai data budidaya ini dapat diperoleh melalui kualitas air, data pertumbuhan ikan, data panen, hingga hasil perhitungan secara finansial. Kini akurasi dan keamanan data dapat lebih terjamin dengan penyimpanan secara digital, sehingga perhitungan untuk analisis usaha budidaya dapat dihitung secara lebih presisi. Baca juga: KKP Dorong Pengembangan Akuakultur Berbasis DigitalDigitalisasi manajemen data budidaya merupakan salah satu penyesuaian proses koleksi data dengan teknologi 4.0 yang memanfaatkan internet of think atau IoT. Aplikasi dari teknologi ini membuat big data dapat disimpan secara online dan diolah untuk analisa tertentu, sesuai yang diutarakan oleh Liris Maduningtyas sebagai CEO Jala Tech di Bincangmina pada bulan Juni (16/6/2020) kemarin.Digitalisasi data budidaya juga menjadi penting karena dengan bantuan sistem cloud maka data-data tersebut akan tersimpan secara otomatis dan juga memiliki tingkat keamanan yang lebih tinggi. Resiko data yang hilang akibat human error juga akan berkurang. Penyimpanan secara online ini juga membantu pembudidaya dalam mengakses data budidaya sehingga dapat dilakukan dimana saja. Proses ini akan membantu pembudidaya mengelola kolam walaupun sedang tidak berada di tempat.Baca juga: Digitalisasi Bahan Alam Laut IndonesiaDengan bantuan artificial intellegence (AI), Jala Tech, ungkap Liris menyediakan pengolahan data budidaya oleh sistem sehingga dapat memberikan rekomendasi terkait menejemen budidaya yang dapat digunakan, prediksi pertumbuhan yang lebih akurat, prediksi panen, peringatan adanya penyakit, dan lain-lain. Data ini juga dapat digunakan sebagai laporan keuangan budidaya udang kepada investor atau evaluasi keuangan di siklus selanjutnya. Liris menjelaskan bahwa Jala Tech, selain membuat platform digital untuk pembudidaya udang,  juga melengkapi layanan digitalisasi datanya dengan menyediakan alat ukur kualitas air multiparameter yang terhubung langsung dengan cloud Jala Tech. Data budidaya ini secara otomatis akan disimpan kemudian diolah menjadi grafik untuk membantu menganalisa keadaan budidaya saat itu. Data budidaya yang dapat diakses secara real time akan membantu pembudidaya dalam mengambil tindakan yang cepat dan tepat terkait dengan keadaan tambaknya saat itu.Dibuat oleh Tim MinapoliTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
Vertical Coloumn Photobioreactor untuk Kultur Fitoplankton dengan Akrilik
Teknologi

Vertical Coloumn Photobioreactor untuk Kultur Fitoplankton dengan Akrilik

Apa itu Phytoplankton atau makro alga? Phytoplankton atau fitoplankton sudah lama dikenal sebagai sumber protein dalam budidaya larva udang ataupun ikan dan sebagai suplemen makanan bagi manusia. Mikroalga memiliki peranan yang sangat besar yaitu sebagai dasar dari suatu rantai makanan dalam ekosistem perairan, sehingga mikroalga digunakan sebagai pakan hidup untuk menunjang budidaya organisme perairan yang bersifat komersial. Saat ini lebih dari 40 spesies mikroalga yang telah berhasil dibudidayakan, guna menunjang kegiatan pembenihan ikan antara lain lain Nannochloropsis sp, Skeletonema sp, Tetraselmis sp, Dunaliella sp, Chaetoceros sp, Isochrysis sp. dan Scenedesmus sp.Sumber: Marine Phytoplankton AustraliaMikroalga merupakan bentuk tumbuhan yang paling primitif berukuran seluler yang lebih dikenal dengan fitoplankton (alga laut bersel tunggal) dan diatome. Nannochloropsis sp. merupakan jenis alga hijau (Chlorophyta) yang memiliki sel berwarna kehijauan dan tidak berflagel. Selnya berbentuk bola, berukuran sedang dengan diamater 2-8 µm Kelebihan jenis mikroalga ini cukup mudah dikultur dalam waktu singkat dan nilai nutrisinya sangat tinggi.Baca juga: Unlocking New Potential for Microalgae in AquafeedKandungan Nutrien MakroalgaNutrien adalah salah satu faktor penting yang perlu diperhatikan dalam pertumbuhan mikroalga seperti Nannochloropsis sp. Nutrien yang dibutuhkan oleh mikroalga terdiri dari makronutrien dan mikronutrien. Makronutrien yang dibutuhkan antara lain C, H, N, P, K, S, Mg, dan Ca, sedangkan mikronutrien yang dibutuhkan antara lain adalah Fe, Cu, Mn, Zn, Co, Mo, Bo, Vn, dan Si. Penambahan nutrisi pertumbuhan ke dalam media kultur mikroalga dinilai merupakan aspek yang paling berpengaruh terhadap kuantitas biomassa hasil pembelahan sel mikroalga.Cara Reproduksi MakroalgaNannochloropsis sp. bereproduksi secara aseksual dengan cara membelah diri dan membentuk autospora. Setiap sel yang sudah masak akan membelah diri dan menghasilkan dua dan empat autospora. Autospora adalah spora non flagela yang bentuknya menyerupai sel induknya, tetapi mempunyai ukuran tubuh lebih kecil.Autospora yang telah dihasilkan dibebaskan dari sel induk melalui penghancuran dinding sel dewasa dan berkembang hingga mencapai ukuran sel induknya. Sedangkan Skeletonema memiliki bereproduksi dengan cara membelah sel dan membentuk auxospora dimana dua auxspora menyatu dan membentuk individu baru.Baca juga: Turning Carbon Emissions Into Protein: Novonutrients Aquaculture Feed From BacteriaPenambahan KarbondioksidaSelain itu karbondioksida merupakan faktor pembatas dalam kultur mikroalga. Penambahan karbondioksida akan mencukupi kebutuhan karbon mikroalga yang selanjutnya akan disintesis menjadi energi. Energi yang dihasilkan pada proses fotosintesis mikroalga dapat digunakan sebagai pertumbuhan, cadangan makanan atau untuk mempertahankan diri saat terjadi tekanan pada lingkungan.Kultur Mikroalga Secara KonvensionalPada umumnya kultur mikroalga skala massal menggunakan wadah kultur berbentuk petak atau bulat berbahan beton atau fiber dan umumnya dinding wadah yang tidak transparan sehingga akan menghambat masuknya sinar matahari keseluruh kolam air menyebabkan penyebaran sinar matahari tidak merata.Penyebaran sinar matahari yang tidak merata menghambat proses fotosintes yang merupakan kunci dari produktifitas dari Nannocholoropsis. Untuk itu dikembangkan sebuah metode kultur Nannochloropsis sp dengan menggunakan menggunakan sistim photobioreactorKultur Mikroalga PhotobioreactorPhotobioreactor adalah sistim bioreaktor yang digunakan sebagai tempat kultur mikroalga seperti nannocholoropsis yang menjamin tersedianya cahaya dan nutrisi kedalam reaktor. Photobioreactor terbagi menjadi dua sistim menggunakan sistim horizontal dan sistim vertical. Tabung reactor atau wadah kultur terbuat dari bahan bermaterial transparan.Sumber: researchgate.comPembaharuan dari kegiatan ini adalah menggunakan bahan acrylic berbentuk tabung ukuran kapasitas volume 1,4 ton yang sebelumnya telah dilakukan ujicoba menggunakan bahan plastic dengan ukuran kapasitas volume 70 liter. Sistim kultur vertical column photobioreactor menggunakan sistim countinous culture dimana meniadakan penggunakan aerasi sebagai suplai oksigen dan sekaligus pengaduk digantikan menggunakan sistim sirkulasi. Sistim sirkulasi mengunakan pompa.Baca juga: Study Replaces Dietary Fish Oil With Microalgal OilKeunggulan Produksi Mikroalga dengan PhotobioreactorKultur phytoplankton dengan menggunakan metode vertical couloum photobioreactor mampu mengefesiensikan dan meningkatkan kepadatan Nannochloropsis yang dikultur. Pada kultur konvensional untuk kultur Nannochloropsis dengan volume 6 ton hanya mampu menghasilkan kepadatan 10-15 juta per mil sedangkan dengan menggunakan metode vertical coulumn dengan volume 1,4 ton mampu menghasilkan kepadatan hingga 50-70 juta per mil.Dengan kepadatan Nannochloropsis sp diatas 50 juta per mil dapat memenuhi kebutuhan live feed dalam unit produksi ikan (hatchery ikan). Selanjutnya sistim photobioreactor dapat dimanfaatkan oleh unit pembenihan ikan atau udang dari skala rumah tangga maupun bisnis dengan memodifikasi bahan material yang digunakaan untuk unit pembenihan skala rumah tangga dapat menggunakan wadah plastik. Sedangkan untuk unit pembenihan menengah atau skala industry menggunakan material berbahan arkilik. Selain dapat dimanfaatkan oleh unit pembenihan,  sistim ini, dapat digunakan untuk home industry atau industri berbasis supplement dan kosmetik, karena mikroalga tidak hanya dapat dimanfaatkan sebagai pakan ikan atau udang tapi juga dapat dimanfaatkan sebagai suplemen kesehatan tubuh manusia dan kosmetik.Ditulis oleh: ZarkasihBalai Perikanan Budidaya Air Payau Ujung BateeDirektorat Jendral Perikanan Budidaya Kementriarn Kelautan dan PerikananArtikel asliTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
CPF Builds “Aquaculture 5.0” Shrimp Farm In The USA
Teknologi

CPF Builds “Aquaculture 5.0” Shrimp Farm In The USA

Charoen Pokphand Foods PCL (CPF) is developing a new “Aquaculture 5.0” shrimp farm in the USA. The farm can culture shrimp anywhere, anytime of year, with complete biosecurity and zero waste discharge.“It will be the most sustainable and reliable technology for culturing shrimp,” said Mr. Robins McIntosh, Executive Vice President at CPF. “Homegrown shrimp, our subsidiary in the USA, uses technologies that can culture shrimp anywhere in the world in any season.”He added that while shrimp farms are normally located nearby coastal areas, Homegrown shrimp farm takes an unconventional approach. Although operating the aquaculture farm on an inland, it has total independence from the ocean, operating instead with artificial sea water created by blending locally-sourced fresh water with salt. This strategic decision reduces the cost of shrimp and impact on sensitive coastal environments. Also read: The Inside Story: CP Foods Move to Total Shrimp RAS“Both the hatchery and farm are totally enclosed within a sealed temperature-controlled building. This enables  shrimp culture at the optimum temperature of 30◦ Celsius year-round regardless of the outside temperature. The farm will be equipped with automation and mechanical processes, enabling more efficient operation and less manpower.”“Moreover, the farm recycles all the water, thereby economising salts for mixing artificial sea water and permitting licensing in even the most environmentally restrictive jurisdictions. All wastes from the farm will be captured and processed into an inert disposable product or possibly used as a by-product for other applications.”Shrimp feeds eventually will be made from ingredients which are all sustainable, being neither marine meals nor soybeans from sensitive areas.Mr. McIntosh  pointed out that the farm will be managed on the basis of the “domesticated floc” technology used in brood stock grow-out farms. The farms will be stocked with the fast-growing “CPF Turbo” post larvae that has seen success in CPF’s’ Asian operations. The fast-growing post larvae is seen as critical to make the project economical.Homegrown shrimp plans to get four crop cycles annually, with a yield of 20-25 kilograms/m2 in 8000 m2 of tank area. That will yield 190 tons of fresh shrimp per year (40 count).Also read: Why Hatchery Protocols Are Key To Ensure Fish Achieve Their Grow-Out Potential“We are anticipating a minimum selling price of $15/kg and gross revenue of $2.85 million per year.   Eventually, with the 20 hectares of land, we could have five farming units and a hatchery, giving us total production of 950 tons/year and annual revenues of $14.25 million.”Source: Bangkok Post ...
Manfaat Vaksinasi Bagi Keberhasilan Budidaya Ikan
Teknologi

Manfaat Vaksinasi Bagi Keberhasilan Budidaya Ikan

Pengelolaan kesehatan ikan dalam upaya pengendalian penyakit pada perikanan budidaya, selama ini lebih mengandalkan pada penggunaan bahan kimia/obat/antibiotik. Belakangan semakin diketahui bahwa  penggunaan bahan-bahan tersebut memiliki dampak negatif, baik terhadap lingkungan perairan, ikan maupun konsumen. Pada budidaya ikan yang dilakukan secara intensif, penggunaan bahan pengendali penyakit ikan merupakan salah satu komponen yang sulit untuk dihindari. Oleh karena itu, alternative strategi pengelolaan kesehatan ikan dan lingkungan melalui upaya pencegahan dan pengendalian (vaksinasi, biosecurity, probiotik, terapi herbal dan monitoring) harus menjadi paradigma baru bagi pelaku usaha perikanan budidaya. Pencegahan merupakan langkah paling ideal untuk pengendalian penyakit pada perikanan budidaya. Strategi pencegahan penyakit secara dini yang diyakini lebih efektif dan prospektif adalah melalui vaksinasi. Program vaksinasi untuk mencegah beberapa penyakit potensial pada perikanan budidaya.Baca juga: Monitoring Kesehatan dan Pengelolaan Hama Penyakit UdangSISTEM KEKEBALAN PADA TUBUH IKANSistem kekebalan pada ikan terbagi atas sistem pertahanan non spesifik dan spesifik. Ikan memiliki mekanisme pertahanan non spesifik seperti mekanisme fagositosis yang diperankan oleh sel makrofag dan leukosit bergranula, tetapi ikan juga merupakan organisasi yang mengembangkan sistem respon pertahanan seluler dan hormonal yang dimediasi oleh sel limfosit. Ketika ikan mengalami infeksi pathogen, mekanisme kekebalan non-spesifik akan bekerja untuk menghentikan proses infeksi tersebut.  Jika mekanisme tersebut tidak bekerja efektif, maka infeksi akan berlanjut dan mampu menimbulkan gejala klinis penyakit.Pada saat itu, respon kekebalan spesifik akan mulai terjadi, dan jika ikan mampu bertahan hidup maka akan terbentuk antibody spesifik terhadap pathogen pada level protektif dan terbentuk pula sel-sel memori.  Jika terjadi reinfeksi oleh pathogen sejenis, maka ikan tersebut akan kebal, mampu menahan infeksi karena respon kekebalan sekunder akan terjadi, sebagai efek booster.Faktor-faktor yang berpengaruh pada system kekebalan tubuh ikan antara lain :- Suhu air. Ikan merupakan hewan poikilotermik. Suhu rendah diketahui sebagai factor pembatas dalam system metabolisme organisme, termasuk proses induksi kekebalan tubuh. Namun demikian, suhu yang terlalu tinggi juga dapat menekan fungsi kekebalan tubuh (immunosuppressive).- Kondisi stress. Apabila terjadi stress, ikan akan bereaksi dengan mensekresi hormon stress (contricosteroids) dalam jumlah yang cukup tinggi, dimana hormon tersebut diketahui sebagai unsurimmuno suppressive.- Immunomodulators adjuvant merupakan unsur yang apabila dicampur dengan antigen untuk keperlun vaksinasi akan meningkatkan efektifitas vaksin (meningkatkan level respon kekebalan spesifik), dan juga dapat melipat gandakan produksi sel-sel fungsional yang berperan dalam system kekebalan non-spesifik.- Keseimbangan nutrisi. Kecukupan pakan (kualitas dan kuantitas) sesuai dengan kebutuhan optimal ikan sangat berpengaruh terhadap sistem kekebalan tubuh ikan.Beli vaksin disini!DEFINISI VAKSINVaksin adalah suatu produk biologi yang terbuat dari mikroorganisme, komponen mikroorganisme yang telah dilemahkan, dimatikan atau rekayasa genetika dan berguna untuk merangsang kekebalan tubuh secara aktif. Vaksinasi merupakan suatu upaya preventif untuk meningkatkan kekebalan pada tubuh ikan secara aktif terhadap suatu penyakit, sehingga apabila kelak ikan terpapar dengan mikroorganisme pathogen tersebut, tubuh ikan akan mampu melawan infeksi tersebut.  Adapun beberapa persyaratan vaksin yang ideal yaitu :- Aman bagi ikan, lingkungan perairan dan konsumen- Vaksin harus spesifik untuk pathogen tertentu- Vaksin harus dapat melindungi ikan (protective duration) dalam waktu yang lama, minimal selama periode pemeliharaan (siklus produksi)- Mudah didapat, aplikatif dan ekonomis- Terdaftar di Kementerian Kelautan dan PerikananAPLIKASI VAKSIN PADA IKANAda beberapa persyaratan umum yang perlu diperhatikan sebelum melakukan vaksinasi ikan : - Sebaiknya ikan telah berumur 1 minggu atau lebih (aplikasi melalui perendaman dan/atau pakan), karena pada umur kurang dari 1 minggu sangat mungkin bahwa organ-organ yang berperan dalam sistem pembentukan antibody belum sempurna.- Apabila vaksin diberikan melalui penyuntikan, maka ukuran ikan harus disesuaikan dengan ukuran jarum suntik (needle) dan dosis, serta harus dipastikan bahwa vaksinasi aman secara anatomis (tidak mengakibatkan abses atau luka).- Status kesehatan ikan dalam kondisi baik dan tidak memiliki parasit. Seandainya ditemukan parasit, maka parasit tersebut harus ditangani terlebih dahulu sebelum pemberian vaksin.- Suhu air relatif hangat (diatas 25 ˚C).- Air yang digunakan untuk melakukan vaksinasi dan pemeliharaan ikan harus bebas dari unsur polutan.Baca juga: Budidaya Sehat dengan KJA SmartSecara umum, vaksinasi pada ikan dapat diberikan melalui 3 (tiga) cara, yaitu melalui teknik perendaman/spray, penyuntikan dan pakan.1. Perendaman dalam Larutan Vaksin  Teknik ini sangat ideal untuk ikan yang ukurannya kecil dan dalam jumlah cukup banyak.Perendaman dapat dilakukan dalam bak beton/fiber glass/akuarium atau ember plastik. Selama proses vaksinasi sebaiknya dilengkapi dengan aerasi, dan kepadatan ikan tidak terlalu tinggi (antara 100 – 200 gram/liter air). Pengamatan tingkah laku ikan selama proses vaksinasi dilakukan secara cermat, apabila terlihat ikan yang mengalami masalah, segera dipindahkan ke air segar. Air bekas rendaman virus harus dibuang sesuai dengan rekomendasi produsen, atau disesuaikan dengan jenis sediaan vaksin yang telah digunakan. Apabila jenis sediaan vaksin in-aktif (killed vaccine) dan tidak mengandung bahan kimia yang berbahaya bagi organisme serta lingkungan perairan, maka air bekas rendaman vaksin tersebut dapat langsung dibuang ke saluran pembuangan. Namun apabila jenis sediaan vaksin hidup dan/atau dilemahkan (attenuated vaccine), maka air bekas rendaman vaksin harus diperlakukan terlebih dahulu dengan desinfektan (misalnya, klorin 300 ppm) selama 24 jam sebelum dibuang ke saluran pembuangan.2.  Penyuntikan Keuntungan pemberian vaksin melalui penyuktikan adalah 100 % vaksin dapat masuk ke dalam tubuh ikan. Ikan yang akan divaksin harus memiliki ukuran yang sesuai. Vaksinasi melalui penyuntikan harus dapat memastikan bahwa ikan harus nyaman selama proses vaksinasi dan pembiusan mungkin diperlukan.  Ada dua cara penyuntikan yang biasa dilakukan, yaitu dimasukkan ke rongga perut (intra peritoneal) dan dimasukkan ke otot/daging (intra muscular). Penyuntikan secara IP biasanya dilakukan di bagian perut, diantara kedua sirip perut atau sedikit di depan anus, dengan sudut kemiringan jarum suntik (needle) kire-kire 30˚. Penyuntikan secara IM biasanya dilakukan di bagian punggung, pada ikan yang bersisik biasanya dilakukan di sela-sela sisik ke 3 – 5 dari kepala, dengan sudut kemiringan jarum suntik kira-kira 30˚ – 40˚.3.  Melalui Pakan Ikan Teknik ini lebih sesuai untuk ikan-ikan yang sudah dipelihara di dalam kolam pemeliharaan ataupun sebagai upaya vaksinasi ulang (booster). Teknik mencampur vaksin dengan pakan ikan yang umum dilakukan adalah : Sediaan vaksin tersebut diencerkan beberapa kali dengan air bersih (sesuai petunjuk penggunaan pada tiap jenis vaksin), kemudian dimasukkan ke dalam botol semprot. Kemudian semprotkan larutan vaksin tersebut ke pakan secara merata (tidak terlalu basah), dikeringkan dengan cara diangin-anginkan. Setelah kering, pakan langsung diberikan pada ikan. Akan lebih baik lagi apabila vaksin yang telah disemprotkan ke pakan diselaputi putih telur terlebih dahulu, dikeringkan dan kemudian baru diberikan kepada ikan. Sebaiknya pencampuran vaksin dilakukan tidak terlalu lama dari jadwal pemberian pakan.JENIS-JENIS VAKSINJenis vaksin penyakit bakterial dan viral yang sudah tersedia secara komersial dan masih dalam tahap pengembangan di Indonesia dapat dilihat pada Tabel berikut.Sumber : Ditkeskanling (2013)TRANSPORTASI DAN PENYIMPANAN VAKSINKerusakan vaksin sering terjadi akibat persyaratan pada saat transportasi dan/atau penyimpanan tidak terpenuhi. Sebagian besar vaksin konvensional memerlukan suhu rendah sebelum digunakan. Oleh sebab itu, selama proses transportasi dan penyimpanan harus sesuai dengan rekomendasi dari prosuden. Kesalahan dalam transportasi dan penyimpanan vaksin dapat menurunkan atau menghilangkan potensi, atau bahkan dapat menimbulkan dampak negative apabila diberikan kepada ikan.Oleh :Farida Widiarshanti, S.S.T.Pi (Instruktur Pertama – BPPP Tegal)DAFTAR PUSTAKADitkeskanling. 2013. Pedoman Penggunaan Vaksin. Jakarta : Direktorat Kesehatan Ikan dan Lingkungan, DJPB – KKP; dan literatur di dalamnya.Sumber: AquatecTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
eDNA Technology More Effective In Monitoring Salmon Runs
Teknologi

eDNA Technology More Effective In Monitoring Salmon Runs

The annual upriver migration of Pacific wild salmon—integral to B.C.'s coastal ecosystem—is an important sustenance source for numerous animal species and a vital economic and cultural lifeline for Indigenous and other communities.But salmon populations are increasingly at risk due to climate change and growing toxicity in ocean and river waters, making it essential to find more effective ways to monitor their population.Genome BC will fund new research at Simon Fraser University involving the use of Environmental DNA (eDNA) technology as a more efficient way of monitoring salmonids, as they return from the ocean to journey upriver to their natal streams to spawn.The study is being led by SFU biology professor Vicki Marlatt, together with the Gitanyow Fisheries Authority's head fisheries biologist Mark Cleveland. The researchers will use eDNA samples to quantify upriver migration of the five species of Pacific salmon passing fish fences installed in the Kitwanga River.Marlatt, who oversees the eDNA Lab at SFU will work with Cleveland's team to design the field sampling regime for water collections and flow. The data gathered from these samples will be used to compare eDNA salmon counts with the more labor-intensive human salmon fish counts to determine which method is more effective.Also read: How Do Salmon Know Where They Were Hatched?Counting salmon using eDNAe-DNA—a low-cost and non-invasive option—is increasingly being used by researchers for sample collection and species monitoring.Varying amounts of eDNA are found in the skin, scales, or waste shed by salmon into their surrounding environment. These samples have a relatively short life span, but can help detect the presence or absence of the salmon through the presence of species specific eDNA, says Marlatt.Also read: Bluegrove Aims to Change Aquaculture Via Technology – Starting with SalmonWhy it mattersMarlatt explains that the human count method for counting salmon works well, but requires labor-intensive human counters and less frequently, sonar, resulting in limited counting across streams in Canada."Additionally, to count spawning salmonids one must construct a fence that spans an entire river to prevent passage of salmon, except through single narrow gates, so that a human observer can count and identify the species," she says."This is costly to construct and operate, thus alternatives to these labor-intensive, high-cost methods would allow more rivers to be monitored for salmon abundance, and this is where testing eDNA for salmon enumeration comes in."If successful, the use of eDNA can be expanded for wider commercial use across B.C.'s fisheries and aquaculture sectors.Source:  phys.org ...
Stealth Cleaner, Robot Pembersih Jaring Ikan di Laut
Teknologi

Stealth Cleaner, Robot Pembersih Jaring Ikan di Laut

Membersihkan sebuah benda yang berada di bawah laut merupakan tantangan berat yang dialami oleh banyak nelayan maupun ABK. Kini, tantangan itu tidak seberat yang dibayangkan dengan hadirnya robot pembersih benda di laut. Alat penangkap ikan atau jaring sering digunakan oleh para nelayan untuk menangkap ikan dalam jumlah besar. Tidak tanggung-tanggung, jumlah ikan yang dapat diangkat ke kapal mampu mencapai ratusan ton, tergantung dari besaran jaring yang digunakan. Pemakaian jaring ikan yang terlalu sering, khususnya yang ditanam di laut untuk budidaya ikan, akan membuat jaring mudah kotor karena dipenuhi lumut atau kotoran lainnya. Hal ini menyebabkan jaring cepat rusak dan cenderung sulit untuk dilihat. Untuk membersihkan jaring tersebut, perusahaan ROV Norwegia Kystdesign telah memproduksi sebuah alat atau robot yang disebut Stealth Cleaner. Stealth Cleaner memiliki bentuk segitiga yang unik dengan warna kuning menyala.Mengutip dari laman Newatlas, Stealth Cleaner terhubung dengan kapal pendukung sebagai stasiun basis kontrol. Pengoperasian dari atas kapal akan memudahkan operator untuk menjangkau seluruh area yang diinginkan. Dikenal dengan sebutan remotely operated vehicle (ROV), mesin ini dapat dioperasikan dari jarak jauh. Semakin panjang kabel yang terhubung, maka semakin pajang pula jarak yang dapat ia tempuh. Penggunaan Stealth Cleaner dapat dikatakan cukup mudah karena operator dapat melihat jaring yang akan dibersihkan melalui kamera yang terpasang. Operator dapat menggunakannya berkeliling secara berturut-turut melewati jaring yang ingin dibersihkan.Baca juga: Budidaya Udang dan Ikan di Perkotaan dengan Teknologi IoTSaat bekerja, Stealth Cleaner akan memompa air melalui nozel pencucian yang berputar di bagian bawahnya. Nozel merupakan alat penyemprot yang dirancang khusus untuk membersihkan noda atau kotoran yang menempel di sebuah benda. Dengan memanfaatkan tekanan air yang besar, perusahaan Kystdesign mengklaim dapat mengurangi keausan pada jaring. Metode pembersihan ini juga lebih baik dibandingkan dengan metode pembersihan lainnya. Kabarnya, mesin pembersih berbentuk segitiga ini mampu membuat cakram sudutnya menjadi celah yang mungkin tidak dapat diakses oleh ROV lain. Ini menjadi salah satu kelebihan yang dimiliki oleh mesin buatan Kystdesign. Stealth Cleaner dilengkapi dengan empat kamera yang memudahkan operator melihat dari beberapa sisi dan tujuh pendorong untuk bergerak ke segala arah di sepanjang jaring atau di perairan terbuka. Pihak perusahaan juga menawarkan kemampuan yang dapat bermanuver 360 derajat.Stealth Cleaner telah diuji coba sebanyak mungkin untuk mengetahui kemampuannya. Lebih dari 8.000 jaring telah dibersihkan dan hasilnya sangat memuaskan atau tidak tertandingi. Dalam upaya penyelamatan bumi dan menjaga lingkungan, Kystdesign membuat produk yang ramah lingkungan. Ini terlihat dari Stealth Cleaner yang menggunakan tenaga listrik tanpa bahaya emisi minyak ke air. Keunggulan lain yang ditawarkan adalah kemudahan dalam melakukan penggantian suku cadang. Teknisi dapat mengganti suatu komponen dengan komponen lainnya dalam waktu singkat. Berbagai macam peralatan yang dikembangkan secara khusus memungkinkan Stealth Cleaner untuk mencakup berbagai tujuan. “Kami bertujuan untuk mengembangkan alat yang efisien untuk membersihkan setiap bagian dari jaring ikan,” ungkap perusahaan Kystdesign.Tentang teknologi lainnya: Budidaya Sehat dengan KJA SmartKystdesign memiliki pengalaman sekitar 20 tahun dalam teknologi penyelaman, ROV, operasi maritim dalam akuakultur, minyak dan gas, serta industri konstruksi. Kystdesign telah memproduksi berbagai teknologi kualitas terbaik di pasaran dan tersebar kepada pelanggan di seluruh dunia. Kystdesign telah bekerja dengan beberapa perusahaan teknologi terkemuka di dunia dan solusi inovatif berkelanjutan untuk budidaya ikan berbasis laut. Ini membuatnya berada di garis depan dalam perkembangan industri akuakultur.  Di antara produk-produknya, ROV Stealth Cleaner merupakan salah satu produk yang telah dipatenkan untuk pembersihan dan inspeksi jaring, peralatan dek Safety Link, dan pemantauan digital operasi penyelaman komersial.Kystdesign bekerja dengan Abyss Subsea dalam mengembangkan Stealth Cleaner. Absea Subsea merupakan salah satu perusahaan yang tergabung dalam Abyss Group, merupakan salah satu koorporasi bawah laut di Norwegia. Abyss Subsea memberikan operasi bawah laut berbasis ROV dan penyelaman. Fokusnya ada pada pengembangan solusi yang hemat biaya untuk inspeksi, pemeliharaan, dan perbaikan bawah laut.Perusahaan ini terdiri dari para profesional yang kompeten dan berpengalaman, baik dalam industri bawah laut maupun lepas pantai. Abyss Subsea juga menawarkan penyewaan pilot ROV dan penyelam komersial, layanan lokakarya bawah laut, dan pelatihan dan pendidikan pilot ROV. Baca juga: Digitalisasi Bahan Alam Laut IndonesiaBeberapa perusahaan penangkap dan budidaya ikan di laut memiliki kebutuhan untuk membersihkan kotoran yang melekat di jaring. Namun, sebagian besar masih dilakukan secara manual dan membutuhkan waktu yang cukup lama, serta tidak efisien.Hadirnya Stealth Cleaner diharapkan mampu memberikan solusi kepada para nelayan dan ABK dalam membersihkan suatu benda yang terikat dengan laut. Ini akan menghemat waktu dan tenaga lebih banyak daripada dilakukan secara manual.Sumber: Sindo NewsTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
Ternyata Begini Pengangkutan Ikan yang Benar
Teknologi

Ternyata Begini Pengangkutan Ikan yang Benar

Pengangkutan ikan dari lokasi budidaya hingga sampai ke tangan konsumen harus dilakukan dengan benar agar kualitas ikan tidak menurun. Terlebih yang dikirim adalah ikan hidup, seperti benih. Agar memudahkan pengangkutan ikan, Anda juga harus memerhatikan pengemasan yang dilakukan dengan benar agar tidak mengganggu kenyamanan ikan. Pengemasan berfungsi melindungi ikan agar tidak rusak, praktis dipindah-pindahkan, dan membuat ikan nyaman selama di perjalanan. Oleh karena itu, pengemasan harus dilakukan dengan hati-hati, terlebih pengemasan ikan hidup harus membuat ikan tetap bertahan hidup hingga sampai di lokasi tujuan.Selain pengemasan, teknik pengangkutan juga tidak kalah penting. Pengangkutan dapat dilakukan melalui jalur darat, laut, dan udara, baik untuk ikan hidup maupun ikan yang sudah mati segar. Pengangkutan ikan jarak jauh sebaiknya melalui udara atau pesawat untuk mempersingkat waktu perjalanan. Namun, biaya pengangkutan menjadi lebih mahal. Selain itu, prosedur pengangkutan lewat udara lebih rumit ketimbang jalur-jalur lainnya.Baca juga: Pendistribusian Ikan Hidup dan Sistem Pengangkutannya (1)Dalam pengangkutan ikan yang masih hidup harus memerhatikan beberapa hal berikut.- Jenis ikan, ukuran ikan, dan kepadatan ikan yang akan memengaruhi sarana pengangkutan.- Perhatikan kemasan pengangkut, tertutup atau terbuka.- Jarak tempuh yang akan dilalui serta transportasi yang digunakan dan sistem kemasan.- Suhu selama peroses perjalanan. Suhu harus dipertahankan, tingkat konsistensi mendekati suhu normal karena ketika terjadi perubahan suhu pada saat proses perjalanan akan membuat ikan stres. Untuk menjaga agar suhu tetap stabil, dapat menggunakan pecahan es batu yang diberikan di sekitar media.Baca juga:  Pendistribusian Ikan Hidup dan Sistem Pengangkutannya (2)Berikut panduan pengangkutan berdasarkan jenis ikan.- Nila: pengangkutan nila sebaiknya menggunakan kemasan plastik tertutup. Untuk ukuran ikan 3—5 cm kepadatannya hanya 100 ekor, ikan berukuran 5—8 cm kepadatannya hanya 60 ekor, dan ikan berukuran 8—12 cm kepadatannya hanya 300 ekor.- Lele: pengangkutan lele dapat menggunakan kemasan kantong plastik dengan sistem tertutup atau menggunakan jerigen dengan sistem terbuka. Ikan lele berukuran 8—12 cm kepadatannya hanya 250—350 ekor dalam satu wadah.- Patin: pengangkutan ikan patin dapat menggunakan kantong plastik dengan sistem kemasan tertutup atau dengan drum 200 liter yang dilengkapi oksigen dengan sistem terbuka. Ikan patin berukuran 2—3 cm dapat diangkut dengan kemasan kantong plastik sebanyak 2.000 ekor saja, sedangkan yang menggunakan drum 200 liter dapat diangkut sebanyak 15.000—20.000 ekor.- Belut: pengangkutan belut dapat menggunakan jerigen atau wadah plastik dengan sistem kemasan terbuka. Untuk semua ukuran belut, bisa diangkut dengan kepadatan mencapai 2/3—3/4 dari volume jerigen atau wadah plastik.- Lobster air tawar: pengangkutan lobster air tawar yang berukuran 1—2 cm dengan kepadatan 500—1.000 ekor dapat menggunakan wadah kantong plastik dengan sistem kemasan tertutup.Sumber: bulelengkab.go.idTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
Teknologi Ini Percepat Produksi Benih Ikan Berkelanjutan
Teknologi

Teknologi Ini Percepat Produksi Benih Ikan Berkelanjutan

Ketersediaan benih ikan air tawar selama ini selalu dikeluhkan oleh banyak pembudi daya ikan skala kecil ataupun besar di seluruh Indonesia. Kendala itu bisa menghambat pengembangan usaha budi daya perikanan yang oleh Presiden Joko Widodo dijadikan sebagai target utama pada lima tahun mendatang.Untuk mengatasinya, Kementerian Kelautan dan Perikanan (KKP) berinisiatif mencari terobosan melalui penggunaan teknologi yang tepat. Agar proses produksi benih ikan lebih cepat, dilakukan pemangkasan waktu pemeliharaan lebih pendek.Menteri Kelautan dan Perikanan Edhy Prabowo mengatakan selain waktu pemeliharaan dipangkas, penggunaan teknologi juga diharapkan bisa menghasilkan tingkat kelulushidup (survival rate/SR) dan tingkat keseragaman ukuran menjadi lebih baik.Sehingga penggunaan teknologi akan bisa menghasilkan tebar padat tujuh kali lebih banyak dibandingkan sistem konvensional. Teknologi yang dinilai tepat diterapkan, adalah recirculation aquacultur system (RAS).“Dengan berbagai keunggulan yang dimiliki, RAS dapat menjadi solusi mengatasi permasalahan kebutuhan benih ikan di seluruh Indonesia,” ungkap dia pekan lalu di Jakarta.Baca juga: Teknologi RAS Berhasil Tingkatkan Produksi Benih GurameMenteri Kelautan dan Perikanan Edhy Prabowo melihat produksi pakan dan teknologi RAS untuk benih ikan budi daya di BPBAT Tatelu,Minahasa Utara, Sulawesi Utara. Foto : Humas KKP/Mongabay Indonesia Tempat produksi benih ikan dengan teknologi RAS yang paling tepat untuk saat ini, sebut Edhy adalah Balai Perikanan Budi daya Air Tawar (BPBAT) Tatelu di Kabupaten Minahasa Utara, Sulawesi Utara.Hal itu karena Tatelu merupakan tempat kegiatan budi daya perikanan air tawar tempat terbesar di Indonesia, dengan kondisi alam yang mendukung terutama kualitas air untuk produksi. “Juga antusiasme masyarakat yang tinggi untuk aktivitas budi daya,” sebut dia.Produksi benih ikan dari BPBAT Tatelu di Sulut, lanjut Edhy, akan diprioritaskan untuk kebutuhan pembudi daya ikan yang ada di kawasan Indonesia Timur.“Teknologi RAS adalah jawaban akan kekurangan benih unggul di pembudi daya untuk kawasan Indonesia Timur. Dalam aktivitas perikanan budi daya, masalah yang timbul selain harga pakan, adalah ketersediaan benih unggul,” jelas dia.Baca juga: The Inside Story: CP Foods Move to Total Shrimp RAS Di banyak daerah, Edhy menyadari kalau harga benih yang tersedia di pasaran masih cukup tinggi. Penyebab utamanya karena kondisi wilayah, jarak pengantaran, dan ketersediaan yang belum merata di hampir semua daerah.Dengan teknologi RAS yang sudah dimanfaatkan KKP, dia optimis setiap daerah, khususnya sentra produksi budi daya perikanan, bisa merasakan manfaat positif melalui produksi benih yang lebih cepat dan berkualitas. Untuk itu, perlu didorong penggunaan RAS di seluruh Indonesia.Semakin banyak daerah yang menggunakan RAS sebagai teknologi untuk produksi benih, maka akan semakin banyak ketersediaan benih ikan untuk memenuhi kebutuhan budi daya perikanan di daerah setempat. Jika produksi semakin tinggi, maka benih gratis diharapkan bisa diberikan kepada warga.“Dengan semakin banyak produksi benih yang dihasilkan dan semakin banyak masyarakat mendapatkan edukasi, akan semakin banyak pula ikan yang dapat kita produksi,” tuturnyaBeli benih ikan disini!Benih ikan yang diproduksi menggunakan teknologi RAS di BPBAT Tatelu,Minahasa Utara, Sulawesi Utara. Foto : Humas KKP/Mongabay Indonesia Sedangkan Direktur Jenderal Perikanan Budi daya KKP Slamet Soebjakto menjelaskan, penggunaan teknologi RAS akan meningkatkan produktivitas pembenihan ikan dan sekaligus melakukan efisiensi penggunaan air dan lahan. Lebih dari itu, RAS akan menciptakan usaha yang minim dampak negatif terhadap ekologi.Dampak negatif ekologi bisa terjadi karena RAS adalah teknologi yang bisa mencegah terjadinya pencemaran di luar lingkungan perairan. Dengan demikian, sanitasi dan higienitas yang menjadi kunci dari perikanan budi daya, bisa lebih terjaga dan menciptakan teknologi ramah lingkungan.Selain itu, pemeliharaan yang mudah, stabilitas kualitas air lebih terjaga dan penggunaan air lebih hemat, juga akan menjadikan teknologi pembenihan ikan intensif ini sebagai primadona baru di pembudi daya, khususnya pembenih ikan.“Dengan fleksibilitas teknologi RAS yang dapat diterapkan untuk berbagai jenis komoditas baik tawar, payau maupun laut, kita siap untuk dapat memperbanyak teknologi ini di seluruh Indonesia,“ tambah diaDiketahui, teknologi RAS atau sistem budi daya sirkulasi ulang air adalah teknologi yang bisa meningkatkan padat tebar benih ikan yang dihitung per satuan luas atau volume hingga mencapai 28-20 ekor. Sistem tersebut bisa memangkas waktu pemeliharaan benih menjadi hanya 30 hari saja, dengan tingkat SR mencapai 95 persen.Dengan keunggulan tersebut, produksi benih ikan dengan menggunakan RAS akan menghasilkan jumlah lebih banyak hingga 140 kali lipat dibandingkan dengan menggunakan sistem konvensional. Selain itu, RAS juga menjadi unggul, karena penggunaan air ganti menjadi lebih sedikit dibandingkan cara konvensional. Baca juga: Teknik Pembenihan Ikan Kerapu Bebek Penggunaan teknologi RAS (recirculating aquaculture system) meningkatkan dan mengefisiensikan produksi perikanan budidaya. Foto : mat-ras.com Ikan LautKeunggulan tersebut, menegaskan bahwa penggunaan teknologi RAS akan membuat proses produksi benih ikan menjadi lebih efisien dibandingkan jika menggunakan metode konvensional. Dengan wadah yang sama, kapasitas bisa naik lima kali lipat dan kualitas air mudah dikontrol dan lebih stabil.Selain untuk produksi benih ikan air tawar, teknologi RAS juga digunakan untuk produksi benih ikan laut pada pusat pembenihan (hatchery) di Ambon, Provinsi Maluku yang pengelolaanya ada di bawah Balai Perikanan Budi daya Laut (BPBL) Ambon.Seperti halnya pada benih ikan air tawar, kegiatan produksi benih ikan laut juga dilakukan oleh BPBL Ambon, karena pasokan benih ikan air laut untuk kawasan Indonesia Timur sering dikeluhkan susah didapat oleh para pembudi daya ikan.“Selama ini, pelaku usaha harus bekerja keras untuk mendatangkan benih ikan laut dari berbagai balai perikanan yang ada di sekitar Ambon,” ucap Slamet.Sejak awal, dia menyebutkan bahwa pembangunan hatchery di Ambon sudah memiliki tujuan untuk menciptakan industri budi daya atau pembenihan yang berkelanjutan. Dengan demikian, apa yang dilakukan harus meningkatkan efisiensi dan produktivitas yang ramah lingkungan.Baca juga: KKP Resmikan Kawasan Hatchery Ikan Laut Modern di BPBL AmbonSebagai sub sektor yang akan menjadi masa depan perikanan dunia, perikanan budi daya di masa mendatang diperkirakan akan selalu menghadapi tiga persoalan serius, yaitu keterbatasan lahan akibat alih fungsi lahan yang terus meningkat, meningkatnya krisis air, dan tantangan peningkatan produksi.Menurut Slamet, semua kendala tersebut akan bisa dipecahkan jika usaha budi daya perikanan bisa mengadopsi teknologi RAS untuk produksi budi daya perikanan, seperti yang dilakukan para pembudi daya ikan di negara maju. Dengan kata lain, penerapan RAS menjadi upaya yang tepat untuk saat ini.Diketahui, penggunaan teknologi RAS saat ini tidak hanya berlangsung di Tatelu dan Ambon saja, namun juga di BPBAT Sukabumi (Jawa Barat), dan BPBAT Mandiangi (Kalimantan Selatan). KKP sebagai pengayom sektor kelautan dan perikanan juga mendorong daerah lain untuk menerapkan teknologi tersebut.“Penerapan teknologi RAS, dinilainya sudah sesuai dengan harapan karena bisa menciptakan perikanan budidaya ramah lingkungan dan berkelanjutan,” pungkasnya.Sumber: Mongabay.com  ...
Bluegrove Aims to Change Aquaculture Via Technology – Starting with Salmon
Teknologi

Bluegrove Aims to Change Aquaculture Via Technology – Starting with Salmon

Norway-based aquatech firm Bluegrove – formed at the end of June between aquaculture technology firm CageEye and fish farming equipment maker NorseAqua – is aiming to use modern technology and computing solutions to revolutionize the aquaculture industry.Using “Internet of Things,” machine learning, and more advanced technologies, the company is setting its sights on the shrimp aquaculture industry, among other markets. But first, the company plans to solidify its base, and the industry that gave it its start: salmon aquaculture.“Chile is our first overseas port of call. We had planned to move into several other markets this year, we should have been at Aquaculture UK in May, but COVID-19 put that on hold, for example. So we’ll probably be looking to expand later this year or early next year,” Sunil Kadri, CageEye’s director of international business development, told SeafoodSource.Kadri said the company also sees shrimp aquaculture as "ripe for development.'“It has lots of potential improvements to make. The shrimp industry is huge, there’s lots of farms out there, with a lot of area dedicated to farming, with a wide range of tech development, starting with the very basic,” he said. "Then you’ve got other areas like tilapia and pangasius."Also Read: Acoustic Feedback Improves Automated Feeding Systems for ShrimpFor the moment, in Chile, Bluegrove is running two projects.“In both cases, we chose the companies as we felt they had the right culture to do this, so there’s been close interaction with management and the people in the field. We’ve established communication groups, we have a staff member in Norway who actually studied in Puerto Montt [in southern Chile], and her background is fish. She keeps the daily rapport with the people at the site feeding the fish. So there’s a direct communication with them to help them realize the value of the technology. Not just understanding it, which you get with training, but also seeing its full potential,” Kadri said, refraining from naming the companies with which Bluegrove is working.Chile has, according to Kadri, some advantages and disadvantages for the company’s plans, and sometimes those two things go hand-in-hand.“Chile is still a bit behind when it comes to infrastructure, but that’s being addressed, and where some may see an advantage, but I see as a disadvantage, is they have very low-paid staff at the sites [who are] directly interacting with the fish,” he added. “As we become more technologized and more automated so that the humans are interacting with the fish through technology or directly, in order to ensure we get the best outcome, we need to invest in the people. I’ve always said that. You need people who are properly educated and trained, and happy at their jobs, and they’re able to make use of the tools available.”In aquaculture, Internet of Things (IoT) enabled environmental sensors can help farmers understand the impact of wind conditions, water temperature, oxygen content, and water currents. Combining hydroacoustic sensors with machine learning helps read the behavior of the fish and respond to their feeding requirements. The result is that less feed is required to effectively attend to a larger mass of fish.Currently, Bluegrove’s core technology focus is on feeding, but the other area that it is capable of providing information on is monitoring of fish health and welfare, Kadri noted.“It will be in a second stage, that kind of analysis needs to be done manually or watched on the screen. It’s an area of development that’s in our pipeline and high on the list,” he said. “The machine can recognize a pattern at daytime, night time, high tide, low tide, and when there’s a deviation from that pattern, even a small change, the system can provide an alert to the fish farm. That’s one area, the other is that as the machine learns more, it can begin to predict disease, sea lice, or algae blooms. All of these things that are big on fish behavior. That’s the other area we’ll go into with this core technology.”Also read: Technology Allowing Aquaculture To Do Social DistancingThe executive highlighted Chile’s explosive salmon industry growth in the mid-2000s and the resulting environmental degradation.“At that point, I asked if you’re growing so fast, how can you maintain biological control of the systems?" he said. "Within a year the whole system collapsed with disease."Reduced waste of feed, together with integrated multitrophic aquaculture  – where fish byproducts, including waste, are reused as fertilizers or food in another area – can contribute to regeneration, he said.Bluegrove has lofty goals. According to company CEO Bendik Søvegjarto, it was created to help provide sufficient food with the global population expanding to 10 billion people by 2050, with the resulting demand for food soaring.“As population growth escalates, we must find ways to provide nutritious and protein-rich food from the world’s finite resources,” he said in a press release. “It is therefore essential that we increase seafood production in ways that are not only sustainable but also cost-effective. Cost reductions will obviously make seafood producers more competitive and more profitable, even as the seafood they make becomes more affordable for their customers.”The endeavor looks to take a step further in IoT – where everything that can be measured, is measured – which in agriculture translates into satellite images helping food producers detect storms, droughts, and floods before they occur, in order to act accordingly. In aquaculture, besides understanding environmental conditions, machine learning can aid farmers in interpreting fish behavior and help farmers respond to their feeding requirements.Also read: A Practical Guide to Using AI in AquacultureBluegrove said its technologies help shape the Internet of Species (IoS), which has the potential to bring on an ecological revolution in agriculture, aquaculture, and forestry, where humans’ needs merge with those of other species and nature more broadly.“As technological solutions spread and as more farmers learn to gather, analyze, and respond to data, both agriculture and aquaculture become more efficient. This will result in the provision of billions of additional meals every year, without increasing the acreage farmed, without increasing the number of farmed animals and fish or other maritime species, and with only slightly increasing the volume of feed required,” Søvegjarto wrote in an article published on Medium. “It will be done while simultaneously protecting the environment and improving the health and welfare of both animals and fish. Farmers will make more money and create more jobs and prosperity, even as prices fall to make food affordable for more people … Sustainable farming, both on land and at sea, offers the solution.”Alongside the founding of Bluegrove, the company announced the launch of the Bluegrove Foundation, which will look to work with local communities in creating healthy environments and optimizing sustainable food production, both at sea and on land.Source: Seafood Source ...
Pendistribusian Ikan Hidup dan Sistem Pengangkutannya (2)
Teknologi

Pendistribusian Ikan Hidup dan Sistem Pengangkutannya (2)

Pengangkutan ikan dapat menggunakan beberapa sistem, sesuai dengan kebutuhan dan jenis ikan tertentu. Pengangkutan Sistem BasahTransportasi ikan untuk konsumsi diharapkan dapat mempertahankan mutu ikan mulai dari daerah pemanenenan sampai ketangan konsumen. Pada transportasi ikan hidup dengan sistem basah pada umumnya dilakukan dengan dua cara, yaitu cara terbuka dan cara tertutup. Transportasi sistem basah (menggunakan air sebagai media pengangkutan) terbagi menjadi dua, yaitu :a. Sistem TerbukaPada sistem ini ikan diangkut dalam wadah terbuka atau tertutup tetapi secara terus menerus diberikan aerasi untuk mencukupi kebutuhan oksigen selama pengangkutan. Biasanya sistem ini hanya dilakukan dalam waktu pengangkutan yang tidak lama. Berat ikan yang aman diangkut dalam sistem ini tergantung dari efisiensi sistem aerasi, lama pengangkutan, suhu air, ukuran, serta jenis spesies ikan. Cara terbuka dilakukan dengan mengangkut ikan dalam wadah yang diisi air dan diberikan aerasi secara terus menerus untuk mensuplai oksigen dari luar selama transportasi berlangsung.Baca juga: Pendistribusian Ikan Hidup dan Sistem Pengangkutannya (1)b. Sistem TertutupDengan cara ini ikan diangkut dalam wadah tertutup dengan suplai oksigen secara terbatas yang telah diperhitungkan sesuai kebutuhan selama pengangkutan. Wadah dapat berupa kantong plastik atau kemasan lain yang tertutup. 11 Sedangkan cara tertutup menggunakan wadah tertutup dengan suplai oksigen diberikan secara terbatas sesuai dengan kebutuhan yang telah diperhitungkan selama pengangkutan dengan menggunakan wadah polyethyleneatau unit-unit transportasi tertutup lainya.Wadah-wadah tersebut banyak digunakan untuk mengangkut anak-anak ikan.Transportasi anak-anak ikan dalam kantong polyethylene dengan penambahan oksigen merupakan metode transportasi yang telah tersebar di dunia dan dianggap cuckup efektif. Beberapa permasalahan dalam pengangkutan sistem basah adalah selalu terbentuk buih yang disebabkan banyaknya lendir dan kotoran ikan yang dikeluarkan. Kematian diduga karena pada saat diangkut, walaupun sudah diberok selama satu hari, isi perut masih ada. Sehingga pada saat diangkut masih ada kotoran yang mencemari media air yang digunakan untuk transportasi. Disamping itu, bobot air cukup tinggi, yaitu 1 : 3 atau 1 : 4 bagian ikan dengan air menjadi kendala tersendiri untuk dapat meningkatkan volume ikan yang diangkut.Baca juga: Pakai Minatransporter, untuk Jaga Kesegaran dan Daya Tahan IkanTransportasi Sistem KeringPada transportasi sistem kering, media angkut yang digunakan adalah bukan air, Oleh karena itu ikan harus dikondisikan dalam keadaan aktivitas biologis rendah sehingga konsumsi energi dan oksigen juga rendah. Makin rendah metabolisme ikan, terutama jika mencapai basal, makin rendah pula aktivitas dan konsumsi oksigennya sehingga ketahanan hidup ikan untuk diangkut diluar habitatnya makin besar. Penggunaan transportasi sistem kering dirasakan merupakan cara yang efektif meskipun resiko mortalitasnya cukup besar. Untuk menurunkan aktivitas biologis ikan (pemingsanan ikan) dapat dilakukan dengan menggunkan suhu rendah, menggunakan bahan metabolik atau anestetik, dan arus listrik. Pada kemasan tanpa air, suhu diatur sedemikian rupa sehingga kecepatan metabolisme ikan berada dalam taraf metabolisme basal, karena pada taraf tersebut, oksigen yang dikonsumsi ikan sangat sedikit sekedar untuk mempertahankan hidup saja. Secara anatomi, pada saat ikan dalam keadaan tanpa air, tutup insangnya masih mangandung air sehingga melalui lapisan inilah oksigen masih diserap 2.5 PengaruhKepadatan terhadap Transportasi Ikan HidupKepadatan ikan adalah bobot ikan yang berada dalam suatu wadah dan waktu tertentu. Kepadatan ikan yang dapat diangkut tiap wadah, untuk masa angkut tertentu dengan hanya sedikit atau tanpa kematian seekor pun merupakan persoalan penting dalam pengangkutan. Kepadatan ikan yang diangkut tergantung kepada volume air, bobot dan ukuran ikan, jarak dan lama pengangkutan, suplai oksigen dan temperatur. Tingkat kepadatan ini ada batasnya, karena bila ikan di angkut pada kepadatan yang terlalu tinggi, kadar glikogen dalam plasma meningkat dan mempengaruhi kondisi ikan. Sumber: Masyarakat Akuakultur IndonesiaTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
Pendistribusian Ikan Hidup dan Sistem Pengangkutannya (1)
Teknologi

Pendistribusian Ikan Hidup dan Sistem Pengangkutannya (1)

Transportasi ikan hidup pada dasarnya adalah memaksa menempatkan hasil perikanan tersebut pada suatu lingkungan yang berbeda dengan lingkungan asalnya disertai dengan perubahan-perubahan sifat lingkungan yang relatif sangat mendadak, dimana perubahan tersebut sangat mengancam kehidupan ikan. Faktor-faktor penting yang mempengaruhi transportasi ikan hidup adalah jenis, umur, dan ukuran ikan, ketahanan relatif ikan, tempertatur air, lama pengangkutan dan lama istirahat, sifat alami wadah pengangkutan dan kondisi klimatologi pada saat transportasi.Beli sarana pendukung budidaya disini!Faktor-faktor penting yang mempengaruhi keberhasilan pengangkutan adalah kualitas ikan, oksigen, suhu, pH, CO2, amoniak, kepadatan dan aktivitas ikan.1). Kualitas IkanKualitas ikan yang ditransportasikan harus dalam keadaan sehat dan baik. Ikan yang kualitasnya rendah memiliki tingkat kematian yang lebih tinggi dalam waktu pengangkutan yang lebih lama dibandingkan dengan ikan yang kondisinya sehat.2). OksigenKemampuan ikan untuk menggunakan oksigen tergantung dari tingkat toleransi ikan terhadap perubahan lingkungan, suhu air, pH, konsentrasi CO2 dan hasil metabolisme seperti amoniak. Biasanya dasar yang digunakan untuk mengukur konsumsi O2 oleh ikan selama transportasi adalah berat ikan dan suhu air. Jumlah O2 yang dikonsumsi ikan selalu tergantung pada jumlah oksigen yang tersedia. Jika kandungan O2 meningkatikan akan mengkonsumsi O2 pada kondisi stabil dan ketika kadar O2 menurun konsumsi O2 oleh ikan lebih rendah dibandingkan konsumsi pada kondisi kadar O2 yang tinggi.3). SuhuSuhu merupakan faktor yang penting dalam transportasi ikan. Suhu optimum untuk transportasi ikan adalah 6 – 8 oC untuk ikan yang hidup di daerah dingin dan suhu 15 – 20 oC untuk ikan di daerah tropis.Beli alat kualitas air di Pasarmina4). Nilai pH, CO2, dan amoniakNilai pH air merupakan faktor kontrol yang bersifat teknik akibat kandungan CO2 dan amoniak. CO2 sebagai hasil respirasi ikan akan mengubah pH air menjadi asam selama transportasi. Nilai pH optimum selama transportasi ikan hidup adalah 7 sampai 8. Perubahan pH menyebabkan ikan menjadi stres, untuk menanggulanginya dapat digunakan larutan bufer untuk menstabilkan pH air selama transportasi ikan. Amoniak merupakan anorganik nitrogen yang berasal dari eksresi organisme perairan, permukaan, penguraian senyawa nitrogen oleh bakteri pengurai, serta limbah industri atau rumah tangga.5). Kepadatan dan aktivitas ikan selama transportasiPerbandingan antara volume ikan dan volume air selama transportasi tidak boleh lebih dari 1 : 3 . Ikan-ikan lebih besar, seperti induk ikan dapat ditrasportasi dengan perbandingan ikan dan air sebesar 1 : 2 sampai 1 : 3 , tetapi untuk ikan-ikan kecil perbandingan ini menurun sampai 1 : 100 atau 1 : 200. Kesegaran ikan juga dipengaruhi oleh kondisi apakah ikan dalam keadaan meronta-ronta dan letih selama transportasi. Ketika ikan berada dalam wadah selama transportasi, ikan-ikan selalu berusaha melakukan aktivitas. Selama aktivitas otot berjalan, suplai darah dan oksigen tidak memenuhi, sehingga perlu disediakan oksigen yang cukup sbagai alternatif pengganti energi yang digunakan.Sumber: Masyarakat Akuakultur IndonesiaTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
Automatic Submersible Fish Cage Systems Counter Weather, Surface Problems
Teknologi

Automatic Submersible Fish Cage Systems Counter Weather, Surface Problems

The development of offshore fish cage technology has recently been driven by the limitation of nearshore site expansion. Most offshore sites, however, are exposed to heavy winds and waves, which can severely stress the fish or damage the cages. Furthermore, some sites can be near shipping lanes, be exposed to harmful algal blooms and be difficult to access during adverse weather conditions.Therefore, the development of fish cage technologies that can be submerged may be necessary to avoid the operational challenges of surface-based aquaculture. Subsurface aquaculture may also help operators avoid surface-related issues such as jellyfish infestation, unsuitable temperatures, high pollutant levels, oil spills and many types of biofouling.Experimental submersible cagesTwo small-scale automatic submersible fish cage systems – a remotely operated fish cage with tethered surface control system and an autonomous submersible cage system using air control – have recently been developed for deployment in the waters off Korea. The cage systems can move vertically within the water column by adjusting the weight and buoyancy of the cages with an automatic control system.The next step in development will be to design a commercial-size system and perform engineering and economic analyses to investigate whether these systems could be effectively incorporated into the wider marine aquaculture industry.Also read: Net Gains in Aquaculture Net TechnologyRemote cage with tethered controlThe primary objective of developing the submersible fish cage system was to provide the capability of reducing the mortality of farmed fish due to toxicity from algal blooms in coastal waters. The cage design consists of 12 angled rigid frame components with both containment and cover nets, 12 upper floats, 12 tanks for fixed and variable ballast, mooring ropes, anchors, a control station and surface control panel.The upper frame includes 12 fixed flotation tanks, while the lower frame has six fixed flotation tanks and six variable ballast tanks. The fixed ballast tanks enable workers to adjust the buoyancy manually, while the buoyancy of the variable ballast tanks is remotely adjustable with the control system.The mechanical components of the control system are attached to the top of the fish cage and tethered to the surface control panel. This allows operators at the surface to regulate the flow of air or seawater to the variable ballast tanks. The surface control panel regulates a compressed-air source with six two-way and 12 three-way valves and includes three clinometers, four electrical terminals and necessary air hose connections.The watertight control station is attached to the center of the upper frame of the cage with stainless steel turnbuckles and wire rope. It is also connected to the surface control panel (located on a service vessel) by electrical cables.Ballast systemThe variable ballast system consists of a regulator to control the pressure of the air released from the air compressor, a motor valve for controlling the opening and closing of the piston valve, a motor valve for adjusting air pressure inside the tank, a pilot valve for controlling the motor valve and a piston valve. To submerge the cage, compressed air is expelled through the motor valve, allowing seawater to enter through the piston valve and reduce buoyancy in the tank.The cage system can be submerged to a predetermined depth and then resurfaced after a specified time with a remotely operated control system. To surface the cage, air released from the compressor displaces seawater in the variable ballast tanks, increasing buoyancy. The motor valves are operated electrically by the control system from the surface control panel. Although biofouling on the ballast tanks increased during a five-month test, the piston valve closed and opened normally.A worker checks the control station on top of a remotely operated submersible fish cage system.Autonomous cage systemA fully automatic rigid fish cage system was also developed. The automatic control system monitors environmental parameters such as wave height and wind speed so the cage can be submerged in extreme sea conditions and then surfaced after the weather has passed.In the autonomous cage system, vertical positioning in the water column is done with a control system that first senses surface wind speeds. At a predetermined “extreme” value, the control system operates a combination of variable ballast tanks that can be filled with water for sinking. When the surface conditions become calm, the water in the tanks is displaced with air, and the system comes back to the surface.The 12-sided cage structure incorporates a steel framework with a 5.92-m diameter and depth of 2.91 m. Attached to the steel framework are a housing for motor valves that control variable ballast tanks, eight housings for two air compressors, a main control system, four batteries, a reserve air tank, four high-pressure air tanks, 12 variable ballast tanks and a seawater pump housing. The net of the fish cage is tightened across the frame to minimize volume reduction due to currents.Have your own submersible fish cage here!Control stationThe cage is outfitted with a control station above the valve housing that adjusts buoyancy by utilizing compressed air stored in air tanks. The mechanical components of the ballast systems are operated by automated software that incorporates control and monitoring algorithms when a preselected sea state occurs.The control station has a wind gauge, wireless communication printed circuit boards and a transmitting antenna. During operation, it monitors wind speed, so the cage can be submerged before extreme conditions cause damage and then surfaced after the bad weather passes.Possible improvementsMany of the system and subsystem assemblies of the control system can be simplified to minimize potential failure points and reduce the amount of maintenance required. Combining pressure housing units may decrease potential leakage issues.Improvements could also be made in sensing critical surface weather conditions. An accelerometer may be more effective than a wind gauge, as wind gauges are routinely damaged under adverse weather conditions.From an operational perspective, it is important to tighten slack in all of the attachment line connections while the fish cage is submerged. If not, the cage can experience excessive movement that may be detrimental to the caged fish stock.Source: Aquaculture Alliance ...
Net Gains in Aquaculture Net Technology
Teknologi

Net Gains in Aquaculture Net Technology

Aquafeeds are typically cited as the biggest operating expense in aquaculture. So the netting to keep fish in and predators and pests out may end up being overlooked.The industry is now paying more attention to net technology, said Vayu Garware, chairman and managing director of Garware Technical Fibres Ltd. (GTFL) of Pune, Maharashtra, India.“Nets are a small part of the overall cost but can significantly impact the bottom line,” he told The Advocate.What’s more, innovations in net materials and technologies promise even bigger boost to the bottom line. Examples come from GTFL itself, which has become one of the leading suppliers of netting materials to the Norwegian farmed salmon sector.The company gets a substantial portion of its revenues from aquaculture, with its products found all over the world. According to Garware, GTFL’s latest nets are made of high-density polyethylene (HDPE), instead of the more traditional nylon.Also read: Teknologi Jaring UHMWPE Sekuat BajaWhile acknowledging nylon is the stronger of the two materials in dry-state tests, “It’s not only about strength. It’s about the actual application in wet conditions,” Garware pointed out.Nylon is hydrophilic, or water loving. So, when immersed, nylon readily absorbs water and undergoes accelerated breakdown. Thus, nylon gets weaker in water over time and nets made of it generally last only five years, Garware said.HDPE, in contrast, is hydrophobic, or water averse. Therefore, it doesn’t break down in water and suffers a minimal loss of strength over a similar time frame.The result of using the new hydrophobic material is nets last longer. Garware noted that when cleaned in place there may be a doubling or more in net lifetime. HDPE also has better abrasion resistance of the two materials, an important advantage for fencing intended to keep predators out.There are some drawbacks to HDPE. For instance, some formulations result in material that is less dense than water, which means it floats. GTFL builds its nets on a marine steel core and adds a pattern of lead weights, which together overcome floatation issues and add strength.New aquaculture nets with copper ions (right) increase the material density and reduce biofouling (left), the removal of which is costly and time consuming. The metallic particles lead to a continuous release of a small amount of copper ions into the water, reducing environmental harm. Photo courtesy of Garware Technical Fibres Ltd.The company’s latest innovation incorporates tiny metallic copper particles within the net material. The process took four years to develop, according to Garware. Adding copper further increases the material density and brings another benefit: less biofouling. The metallic particles lead to a continuous release of a small amount of copper ions into the water.“This delays fouling growth and therefore also delays any requirement to clean. We are able to see at least a 50 percent reduction in cleaning cycles,” Garware said.Traditionally, biofouling has been reduced through the application of copper oxide paints. Such paints, though, tend to flake off and end up on as sediment on the seafloor, becoming an environmental hazard. The copper ions released by GTFL’s new products do not produce such a sediment, and the small amount of copper released suppresses biofouling without harming the environment, according to Garware.Another netting-related innovation also addresses the biofouling problem, with Aqua Robotics of Harstad, Norway, automating the application of elbow grease. The company’s robot sits above the water and travels around the cage structure, moving a submerged brushing system that scrubs the net inside and out from top to bottom.Norwegian company Aqua Robotics developed a robot that sits above the water and travels around the cage structure, moving a submerged brushing system that scrubs the net inside and out from top to bottom. Courtesy photo.The automated system does not work on nets that are already encrusted with marine life, said CEO Knut Molaug. “We start with a clean net and we prevent it from the biofouling. So, we maintain it clean.”Besides copper oxide paint, today biofouling mitigation can involve cleaning a net with a high-pressure spray, which is labor-intensive, expensive and stresses the fish inside. A high-pressure wash also interrupts fish feeding, another drawback.Aqua Robotics’ robot avoids such problems. The parts of the net near the surface, which see greater biofouling due to the presence of more oxygen and light, are cleaned more often.Also read: Top Copper Maker Wieland Sees End to Escapes, Will Improve Fish Health With Brass Mesh CagesMolaug said that one surprising finding was how often cleaning needed to be done. The company’s latest robots, which are in the field in eight locations, clean continuously.Aqua Robotics owns the systems and delivers a cleaning service, with customers paying a fee. Discussing plans, Molaug said the company is ready to scale up operations.In speaking of the future, GTFL’s Garware noted that the company has extensive ongoing research and development programs. Work is underway on improved sea lice barriers, algal bloom shields and other material innovations.For instance, GTFL is working on ropes for moorings that hold netting in place. Results over a year and a half of testing indicate that material improvements can significantly reduce the number of times that restraining ropes must undergo retensioning. The benefit in terms of cost savings depends on the location of the cage structure, but the company believes the savings can be more than seven-fold what would be spent on a new rope.Such a return shows that an investment in netting, related gear and net technology can pay off. This also is indicative of what GTFL strives for, Garware said. “If we can give payback to customers in months, then we are doing something the right way.”  Source : Global Alliace Aquaculture ...
Tes Genetika, Cara Baru Penelitian Keragaman Hayati Laut Indonesia
Teknologi

Tes Genetika, Cara Baru Penelitian Keragaman Hayati Laut Indonesia

Keragaman hayati Indonesia kini bisa diteliti dengan data masif. Sekelompok peneliti melakukan percobaan meneliti keragaman genetik di lima titik penyelaman populer di nusantara dan menggunakan model yang bisa memproses data besar.Hal ini didiskusikan dalam Oceanogen Talk 01 Live bertajuk Next Generation Sequencing (NGS) and Big Data for Marine Biodiversity Research in Indonesia, Challenges and Opportunities pada Senin (15/6/2020). Ni Kadek Dita Cahyani, peneliti perempuan dari Bali yang sedang menyelesaikan riset Phd di Ecology and Evolutionary Biology Department UCLA Amerika Serikat dan pegiat di Yayasan Bionesia memaparkan generasi terbaru sekuensing data masif ini.Dimoderatori oleh Hawis Madduppa yang memperkenalkan fasilitas laboratoriumnya Oceanogen, yang membawa semangat The Genetic Code of Innovation. “Fasilitas kami sudah bisa identifikasi cepat, buat database keanekaragaman hayati untuk pengelolaan berkelanjutan,” ujar Hawis. Lembaga ini melakukan digitalisasi sampel, melayani berbagai pelayanan DNA, melakukan DNA barcoding, identifikasi makanan, seafood, daging, buah, identifikasi bakteri, melayani industri jenis-jenis makanan, dan lainnya. Misalnya dalam satu kaleng makanan, apa saja genetiknya sehingga bisa melakukan identifikasi secara rigid.Salah satunya Next Generation Sequencing (NGS). Pihaknya juga mengadakan pelatihan dan internship bagi peneliti. Pelatihan terakhir tentang DNA barcoding. Ini adalah metode mengidentifikasi sesuatu atau spesies dengan gen yang spesifik. “Laboratorium sudah makin maju meneliti genetik,” sebut Hawis.Baca juga: A Pioneering Perspective on Shrimp Genetics Meneliti keragaman genetik di lima lokasi penyelaman populer dengan ARMS. Foto : repro Dita Cahyani Sementara Dita Cahyani memaparkan makin banyak penelitian genetika kelautan di dunia. Karena itu, peneliti Indonesia harus aktif berperan serta. Misalnya untuk penamaan spesies, filogenetik atau pohon kekerabatan, DNA barcoding, dan meneliti konektivitas genetik yang kini banyak digunakan di bidang konservasi dan industri akuakultur. Akuakultur adalah budidaya ikan hias dengan tujuan mengurangi penangkapan di alam.Salah satu risetnya adalah mengidentifikasi genetik di kedalaman bawah laut Raja Ampat dan Teluk Cendrawasih di Papua, Pulau Weh-Aceh, Kepulauan Seribu, dan Teluk Pemuteran-Bali.Autonomous Reef Monitoring Structure (ARMS), sebuah plat PVC dengan 9 tingkat ditenggelamkan di kedalaman sekitar 10 meter pada 2013 oleh sejumlah peneliti dari berbagai institusi dan universitas di Indonesia. Struktur ini dipasang 90 buah di kelima titik lokasi penyelaman itu, dan yang bisa diambil kembali sekitar 80 buah pada 2016. “Ada yang sudah dibuka oleh seseorang, dan dibuang kembali jadi rusak,” ujar Dita saat dikonfirmasi kembali lewat telepon.Penggunaan struktur materi PVC untuk pengambilan sampel dinilai cukup efektif karena bisa dipakai beberapa kali. Tinggal membersihkan sampel dan ditaruh lagi. Sampel yang melekat di permukaan ARMS ini dikerik, lalu diblender, untuk tes genetiknya. Sampel dianggap mewakili semua organisme yang hidup di titik perairan tersebut.Data yang bisa diolah dengan NGS sangat masif atau istilahnya big data. Bisa jutaan sekuens DNA yang diteliti. Hasil penelitian organisme, ada sejumlah ikan unidentified atau tak teridentifikasi dengan bank sampel yang ada. Artinya, keberagamannya bagus. “Di Raja Ampat paling banyak unidentified, ada keragaman biodivesitas karena tidak terdeteksi di database sebagai taksonomi, karena tak ada pembanding,” paparnya. Intinya, dengan NGS, sampling bisa jauh lebih banyak dan lebih cepat dalam asesmen. Sementara bisa disimpulkan, di Raja Ampat, keragaman karang lebih banyak dan menyediakan berbagai habitat organisme yang cukup kaya.Salah satu hipotesis yang diuji, Aceh tidak termasuk dalam kawasan coral triangle, yang dikenal memiliki keragaman laut yang tinggi. Teori lain adalah referensi hubungan arus laut dan juga keragaman habitat.Baca juga: How Genetics is Leveling The Aquaculture Playing Field Struktur PVC ini mengandung sampel genetik berbeda sesuai lokasi, yang terkaya adalah struktur sampel di Raja Ampat, Papua. Foto : Dita Cahyani Metode penelitian ini juga bisa melihat pola secara molekuler, apakah berbeda di tiap lokasi? “Mikrobia tak memiliki kelompok genetik yang spesifik di tiap lokasi, di mana-mana ada. Metazoa, hewan bersel banyak keragamannya beda-beda di Indonesia,” lanjutnya. Misalnya ikan yang jenisnya sama, genetiknya beda. Jika diteliti, walau jenisnya sama, namun tiap lokasi genetiknya beda-beda.Secara ekologis, manfaat penelitian keragaman genetik ini adalah untuk preservasi sumber plasma nutfah tiap daerah. “Kita perlu tahu punya apa saja. Screening invasive spesies bisa dilakukan dengan data seperti ini,” jelas Dita. Tantangannya, perlu makin banyak database untuk komparasi. Misal untuk jenis invasif, berapa banyak yang invasif dan yang masih ada di Indonesia.Manfaatnya juga di bidang farmakologi, makin tertarik dengan sumber-sumber genetik baru dan mencari perbedaannya di tiap lokasi. Misalnya sponge mana yang genetiknya bagus, bolehkah diambil? Dita menyebut ini yang perlu diatur, pemanfaatannya oleh pemerintah seperti KKP dan LIPI, menilai spesies apakah endemik atau tidak. Database ini menurutnya wajib bisa diakses peneliti. Sebagai baseline riset.Menurutnya banyak yang masih merasa bahwa database itu sebaiknya jangan dibuka untuk umum, karena takut dengan pencurian data, dan lainnya. Padahal database secara umum diperlukan untuk bisa diakses lebih banyak kalangan, dan ini adalah tanggung jawab peneliti untuk bisa menyediakan data penelitian secara terbuka untuk kepentingan orang banyak. Dita mengatakan, jika riset ini selesai, akan diserahkan ke LIPI.Ketersediaan laboratorium juga penting. Sementara, untuk Indonesia, lokasi terdekat fasilitas sekuensing dengan data masif sebelumnya hanya di Singapura. Syukurnya kini sudah bisa di Indonesia seperti Oseonogen itu. Laboratorium milik Eijkman, menurut Dita, juga mampu namun saat ini sedang fokus di penelitian COVID-19.Baca juga: Why Genetics is Key to The Evolution of Aquaculture Struktur PVC ini mengandung sampel genetik berbeda sesuai lokasi, yang terkaya adalah struktur sampel di Raja Ampat, Papua. Foto : Dita Cahyani Identifikasi SpesiesSecara sederhana, Dita menjelaskan, model ini bisa mengurai susunan DNA dari individu dengan teknik molekuler untuk membedakan spesiesnya. Sebagai contoh, kini banyak penjualan sirip hiu, pemerintah susah mengidentifikasi apakah berasal dari spesies dilindungi atau tidak. Kalau dari visual atau morfologi mungkin bisa diidentifikasi seperti ciri black tip, dan lainnya.Namun akan menyulitkan jika sudah tak bisa dilihat fisiknya. Karena itu diperkenalkan identifikasi molekuler. Identifikasi molekuler juga bisa dimanfaatkan untuk kasus mamalia terdampar. Walau sejumlah dokter hewan sudah ahli membedakan morfologi, tapi jika menemukan yang sudah membusuk, maka pengujian molekuler bisa membantu menjawab.Untuk bidang konservasi, penelitian ini bisa menentukan lokasi marine protected area, dan konektivitas satu populasi dengan lainnya. Di mana area pemijahan, lokasi larva menyebar, dan lainnya untuk menentukan zona perlindungannya.Dita menjelaskan, umumnya jenis riset seperti ini memakai pendekatan standar sekuensing. Cara membaca urutan DNA. Pada dasarnya membaca satu gen yang diperbanyak dari satu individu. Hasilnya adalah satu gen dan satu urutan basa dari satu individu. Keuntungan cara ini murah dan cenderung sederhana. Karena itu paling banyak digunakan di Indonesia.Namun saat ini perkembangan genome sekuensing sangat ketat, tak hanya pada manusia juga organisme lain seperti hewan dan tumbuhan. Alat dan reagen makin murah, dan caranya bergeser dari sekuensing jadi next generation. “Ini pembacaan DNA yang baru, lebih masif dan cepat dibanding sekuensing generasi sebelumnya. Bisa lebih banyak gen dari satu individu atau gen sama dari banyak individu,” papar Dita.Baca juga: Blue Genes: How Genome Research Can Boost Global AquacultureImplementasi NGS ini misalnya di environmental DNA (eDNA), sebuah metode mengambil sampel dari lingkungan tanpa terlihat organismenya di sana. Misalnya ketika ambil dari air, saat itu ada ikan yang lewat dan selnya keluar, ini bisa diidentifikasi. Bisa dipisahkan genetiknya.Jika dulu mengambil sampel satu individu satu gen. Sekarang bisa ambil dari satu komunitas, untuk mendapat banyak spesies dan bisa diidentifikasi berdasar gen yang ditarget. “Laboratorium kita bisa mengerjakan, kita udah siap dengan metode ini,” imbuhnya.Jika tidak bisa menganalisis, Dita menyebut cukup dengan memberikan ekstraksi DNA ke fasilitas sekuensing. Bagian paling menantang menurutnya adalah pengalaman menggunakan bioinformatic pipeline, mengidentifikasi data yang besar dan rumit dengan computer based analysis. Tipsnya harus disiplin mengikuti alur analisis, mencatat data dengan teliti dan simpan raw data jika sewaktu-waktu diperlukan untuk analisis ulang.Bioinformatic Pipeline ini bekerja dengan empat proses besar, pertama menarik raw dana, clean-up, misal hapus barcode tertentu atau sekuens dengan kualitas buruk. Kedua, mengelompokkan sekuens yang sama dari ribuan sekuens. Proses ketiga, melihat taksonominya, dan proses keempat, visualisasi data untuk memudahkan pembaca memahami hasil penelitian“Banyak data genetik Indonesia belum ada di bank data sehingga banyak ditemukan unidentified,” keluh Dita. Harapannya, penelitian genetik terus berkembang di Indonesia, sehingga semakin banyak data genetik yang tersedia di bank data.Pengelolaan data di Indonesia dengan server bagus sangat bermanfaat agar peneliti bisa menganalisis data mandiri dan tak tergantung partner di luar negeri. Potensi wisata bawah laut Kabupaten Berau. Foto: WWF-Indonesia/Cipto A Gunawan Dita juga pernah meneliti untuk tesisnya dari mana saja penyu yang makan di kawasan ruaya Berau, Kalimantan Timur. Hasilnya, berdasarkan data genetik, penyu yang makan di daerah Berau berasal dari sejumlah pesisir yang menjadi lokasi peneluran . “Penyu cenderung kembali ke lokasi bertelur, sehingga dengan melihat apakah seekor penyu memiliki genetik yang spesifik berdasarkan daerah peneluran, kita bisa memperkirakan asal dari penyu yang sedang makan di Berau, asumsi itu diuji,” sebutnya.Akhirnya simpulan diperkuat, Berau adalah daerah pakan bagi penyu-penyu dari berbagai daerah peneluran di sekitar laut Sulu Sulawesi, termasuk Malaysia dan Filipina. Penyu adalah satwa lintas negara, karena itu konservasinya tak bisa satu negara saja. Metode ini diturunkan ke adik kelasnya, mahasiswa S2 FKH Unud mengaplikasikan penelusuran genetik ini untuk identifikasi penyu yang diselundupkan di Bali. Sumber: Mongabay.co.idTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
Teknologi Artemia INVE Terbaru dan Optimalisasi Penetasan Artemia
Teknologi

Teknologi Artemia INVE Terbaru dan Optimalisasi Penetasan Artemia

Produk yang diluncurkan ini sudah dipatenkan oleh INVE untuk membantu para pembenih udang dan ikanDi tengah pandemi covid-19 ini, tidak menghalangi upaya diskusi bersama membahas perkembangan terbaru bidang akuakultur yang dilakukan secara daring (online). Salah satunya digagas Minapoli yang merupakan platform jaringan informasi dan bisnis perikanan terintegrasi untuk menghadirkan seminar eksklusif online bekerjasama dengan salah satu perusahaan global di bidang akuakultur, INVE Aquaculture (INVE) pada Selasa (28/4). Yakni melalui kegiatan Bincang Mina, yang dilakukan melalui aplikasi online semua terhubung, berdiskusi dan berbagi pengetahuan. Chief Executive Officer Minapoli Rully Setya Purnama mengatakan Bincang Mina adalah sebuah forum yang diinisiasi Minapoli untuk bertemu, berbagi dan berdiskusi bersama dengan para pelaku usaha akuakultur baik secara online maupun offline. Rully turut mengucapkan terimakasih kepada para peserta yang ikut berpartisipasi dalam acara seminar online tersebut. “Kami menerima antusiasme yang luar biasa dengan jumlah lebih dari 80 peserta yang ikut partisipasi berasal dari berbagai penjuru tanah air. Atas nama Minapoli saya ucapkan terimakasih sudah berpartisipasi, narasumber serta peserta Bincang Mina,” ucap Rully. Dalam seminar itu pula dihadirkan dua pembicara dari tim ahli INVE yang membahas topik ‘Teknologi dan Prosedur Optimalisasi Penetasan Artemia’. Dua teknologi terbaru dibidang artemia dari INVE Lebih lanjut International Sales Manager INVE Aquaculture, Mario Hoffmann mengatakan INVE Aquaculture sudah lebih dari 35 tahun berdiri di industri perikanan fokus di bidang akuakultur. Saat ini sudah ada lebih dari 1500 customer yang telah berpartner dengan INVE. “Kami pun hadir di semua pasar akuakultur, dekat dengan pelanggan adalah kuncinya. Serta menyediakan solusi akuakultur untuk semua pelanggan,” tuturnya. Produk – produk INVE dihadirkan menjadi solusi untuk mendukung semua tahapan di bidang akuakultur. Seperti di tahap broodstock; INVE menghadirkan program breeding; produk genetik untuk udang maupun ikan (nila dan salmon); dan layanan teknis. Begitu juga produk dan solusi yang ditawarkan INVE di tahap hatchery; baik untuk pembenihan udang maupun ikan. “Kami juga support nutrisi melalui pakan, probiotik dan ada pengembangan baru yaitu vaksin untuk ikan. Sementara di tahap pembesaran kami hadirkan produk-produk kesehatan dan desinfektan. Makanya kami katakan INVE selalu hadir sebagai mitra para pelaku pembudidaya di setiap tahap produksinya,” jelas Mario.Tidak berhenti di situ. INVE juga dikenal sebagai pemain terbesar Artemia di dunia. Sales Manager and Country Coordinator INVE Aquaculture Indonesia, Wawan Siswanto mengatakan secara khusus INVE ingin memperkenalkan produk improvement teknologi dalam bidang Artemia. Produk yang diluncurkan ini sudah dipatenkan oleh INVE untuk membantu para pembenih ikan dan udang. Harapan pastinya akan memu¬dahkan pembudidaya dalam mengoptimalkan hasil produksi. Teknologi ini, diantaranya adalah melalui D-Fense yang dapat menghambat pertumbuhan bakteri. INVE artemia D-Fense menggunakan formula khusus yang dapat menekan pertumbuhan Vibrio. “Karena Artemia diambil dari alam, tidak luput dari kandungan bakteri Vibrio. Teknologi ini mampu menekan pertumbuhan bakteri selama proses penetasan,” ucap Wawan. “Tidak hanya itu, penggunaan D-Fense menghasilkan peningkatan level biosekuriti di tempat penetasan. Naupli Artemia yang dihasilkan kualitasnya lebih tinggi dan lebih sedikit terjadi masalah selama penetasan,” papar Wawan. Selain itu, INVE juga menghadirkan teknologi SEP-Art. Teknologi ini berupa pelapisan cyst artemia yang berukuran mikron dengan bahan Fe. Lewat teknologi ini naupli yang menetas akan menempel dalam magnet. “Teknologi SEP-Art menghasilkan pemisahan antara naupli artemia dengan cangkang hampir 100 %, dan sudah terbukti 12 % hasilnya lebih tinggi dibandingkan artemia konvensional,” ucap Wawan. Dengan artemia SEP-Art dan panen menggunakan alat separator, secara bersamaan menggabungkan produksi dan pemisahan naupli lebih optimal. Penggabungan teknologi SEP-Art dan D-Fense dalam artemia produksi Inve memberikan benefit produksi naupli artemia yang lebih optimal, pemisahan cyst lebih sempurna dan minimalisasi kontaminasi bakteri. Artikel Asli: Trobos AquaBaca juga artikel tentang teknologi budidaya lainnya:Budidaya Udang dan Ikan di Perkotaan dengan Teknologi IoTAlgae Detection System Aims to Help Aquaculture BloomEgg Sorting Technology Helps Pick Fish-Growth Winners ...
‘Water-forecasting’ and Fish Farms Fed on Waste
Teknologi

‘Water-forecasting’ and Fish Farms Fed on Waste

Using waste food to farm insects as fish food; and high-tech real-time water quality monitoring: innovations that could help change global aquaculture, were showcased at the World Economic Forum’s Virtual Ocean Dialogues 2020.Two young entrepreneurs addressed a breakout session of the event called Harnessing the Power of Innovation to Achieve SDG14. Syrine Chaalala, co-founder of the French-Tunisian company nextProtein, and Charlotte Dupont, co-founder of the French company BiOceanOr, revealed the ideas that drove their rapidly accelerating startups.Chalaala’s nextProtein uses food waste to mass-produce insect protein to feed farmed fish in place of fishmeal – the production of which, often from corporate fisheries’ by-catch, can lead to the depletion of ecosystems and the collapse of local fisheries. As our demand for farmed fish is growing 8% a year, her innovation could play a vital role in reducing the knock-on impact of aquaculture on the ocean.She said that farming insects requires a fraction of the space as animal feed production – 100 square metres of space can produce as much protein as 100 hectares of soy field.“Because we wanted to have maximum impact, we wanted to provide solutions to other problems,” said Chalaala, naming food waste and land scarcity as two key issues her business tackles. “Here, we can convert 20 kilos of food waste into 1 kilo of product.” Fly fishing.Image: nextProteinThe method uses vertical farming, little energy and almost no water – testament, said session host Christian Lim of Blue Oceans Partners, to the efficiency of the insects at thriving on low input. The insect nextProtein uses is the Black Soldier Fly, selected due to its high-yield quality, and the ease of processing it into powder, oil and fertilizer. Her business is aiming to produce 100,000 tonnes of insect protein annually by 2025 – or around 10% of the insect meal market.Meanwhile Charlotte Dupont and her colleagues at BiOceanOr have developed what they term “the first underwater weather station for real-time monitoring of water quality”. One of its many applications is for fish farmers who aren’t yet monitoring their water quality in real time.She painted a picture of an industry that is only reluctantly changing, with water quality largely still monitored by hand. Since this process is time-consuming and arduous, it’s generally done only once a day. But once the firm’s underwater ‘weather-stations’ are installed, farmers can get a moment-by-moment grasp on conditions for their stock.“Our first customer called us a few days later to tell us our tool wasn’t working – the oxygen levels couldn’t be so low,” she said. But the equipment was fine: the unprecedented readings had thrown him. He was used to taking his readings only once a day, in the late morning, and had no idea how low oxygen levels could get overnight.BiOceanOr’s AquaREAL systemImage: BiOceanOr“There are a lot of aquaculturists who don’t realize right now the power of real-time monitoring,” said Dupont. “It’s a knowledge that they transmit from generation to generation, like agriculture a century ago: ‘I know it because my father knows it’. They think there’s nothing you can learn from tools, but just as in agriculture, there’s a lot you can learn.”“I think data will be really central in the future,” said Dupont, predicting a future where people subscribe to the water forecast just as today they subscribe to a weather forecast.What’s the World Economic Forum doing about the ocean?Our oceans cover 70% of the world’s surface and account for 80% of the planet’s biodiversity. We can’t have a healthy future without healthy oceans – but they’re more vulnerable than ever because of climate change and pollution.Tackling the grave threats to our oceans means working with leaders across sectors, from business to government to academia.The World Economic Forum, in collaboration with the World Resources Institute, convenes the Friends of Ocean Action, a coalition of leaders working together to protect the seas. From a programme with the Indonesian government to cut plastic waste entering the sea to a global plan to track illegal fishing, the Friends are pushing for new solutions.Climate change is an inextricable part of the threat to our oceans, with rising temperatures and acidification disrupting fragile ecosystems. The Forum runs a number of initiatives to support the shift to a low-carbon economy, including hosting the Alliance of CEO Climate Leaders, who have cut emissions in their companies by 9%.Is your organisation interested in working with the World Economic Forum? Find out more here.“With sensitive ecosystems like reefs and coastal systems, people will be able to subscribe to the data and see what is going on,” she said. These water-quality forecasts will play a vital role in protecting ocean health.Their session provided a short but telling insight into two crucial innovations in aquaculture as we set a course for a sustainable blue economy in the post-COVID-19 era. For more from the Virtual Ocean Dialogues 2020, you can access the whole event here.Source: The European Sting ...
Technology Allowing Aquaculture To Do Social Distancing
Teknologi

Technology Allowing Aquaculture To Do Social Distancing

Algorithm makers and data scientists rally solutions for farmers, even when they’re not able to be near the farmA worker at Cedar Crest Trout Farm in Ontario, Canada, tends to the company’s farm. Photo courtesy of Wittaya Aqua.As the coronavirus pandemic continues to disrupt, can technology and artificial intelligence (AI) help aquaculture find the way forward?Market disruption, reduced or suspended production and declining seafood demand are among the many impacts on aquaculture as COVID-19 carries on. Innovative companies, many of them still bearing the “startup” label, are offering support with a host of initiatives.In India, full-stack aquaculture technology startup Aquaconnect has launched a COVID-19 helpline for shrimp farmers. The company is providing remote support on farm management and helping farmers navigate supply, demand and logistics. It’s also joining forces with processors and exporters to put farmers in touch with those who are still buying shrimp.“We’re aiming to provide complete assistance and information to farmers during this pandemic. We believe that our collaborative effort with other industry stakeholders will help them mitigate the challenges from the country-wide COVID-19 lockdown,” Aquaconnect CEO Rajamanohar Somasundaram told The Advocate.With many restaurants closed or with fewer customers practicing social distancing according to applicable health guidelines, sales in Japan are declining. Because seafood products are often more expensive, customers are cutting back discretionary spending or purchasing more non-perishable foods.In light of this, aquaculture technology provider Umitron is helping fish farmers in Japan adjust to new market conditions. A crowdfunding campaign with Akasaka Fisheries, a red sea bream farmer, is connecting consumers directly with farmers to raise awareness about sustainable farming methods. When Japan lifts its state of emergency, customers will be able to visit restaurants serving Akasaka Fisheries products, watch videos and obtain information on the fish they’re eating. This will offer some relief to participating farmers and restaurants, said Andy Davison, product manager at Umitron.Mobile phone apps keep aquaculture workers connected to their operations, even if they can’t be physically at the farm. Photo courtesy of Umitron.“We want to share farmers’ stories and open customers’ eyes to the hard work and dedication that goes into growing high-quality seafood. Making customers aware of farmers’ struggles is the first step in generating more help,” he said.As more farmers stay at home to comply with social distancing regulations, Umitron’s automated smart feeder CELL is proving advantageous. The device collects data to optimize feeding and is remotely managed through a cloud-based application on a mobile device. This allows farmers to feed and monitor their fish without being on their farm. Remote access to data, forecasting and integration with data logging hardware and automatic feeding systems are likely to go a long way to help reduce farm dependency on human labor.Aquaculture may become even more data-driven and adopt technology which will benefit farmers and consumers by ensuring traceability and creating transparency.“We’re happy that CELL can give farmers added flexibility during this challenging time, even if some in-person work is still required during a prolonged period of disruption such as this,” said Davison.Canadian smart-farming company Wittaya Aqua is also helping to reduce the requirement for farmers to be on site as often. Its cloud-based Big Data platform – Wittaya AquaOp – works for multiple species by accurately forecasting growth trajectories and feed requirements. Farmers can make decisions early to slow down production until markets rebound, while feeding strategies help them reduce the amount they’re feeding their animals (thus reducing costs spent on feed) and lengthen the growing period by slowing the growth of their animals (reducing the need to cull animals) until prices rebound.“Our models and algorithms are accurate for long periods of time with little input from farms,” said Evan Hall, cofounder of Wittaya Aqua. “As well as helping farms run as normal, we’re looking to partner with other companies that deliver smart-farming solutions to bring farms a more holistic package.”Difficulties in selling have left farmers with no choice but to delay harvests, which means that they’re sitting on stocks that cost money to keep with a lot of uncertainty about the future, said Flavio Corsin, Aquaculture Program Director at IDH, the Sustainable Trade Initiative. But technology and AI can also model production versus prices so that advice can be given on the most profitable strategies such as when to harvest or what would happen if a farmer waits. It can also provide information on how to reduce disease risks, data on market needs and prices, and information for financial institutions so that they can provide financing to farms.“Some of the companies we work with provide services to farmers and value chain players and are well-connected in the aquaculture industry. They’re now in a position to support farmers in finding markets in these challenging times, or to swiftly transfer information from the government to farmers. This may increase the resilience not only of the farmers but also of the aquaculture industry itself,” said Corsin.“With auditors unable to carry out on-site audits, now is the time to reflect on how technology can support compliance,” said Juliette Alemany of VerifiK8. Photo courtesy of Verifik8.Juliette Alemany is a data scientist and project manager at VerifiK8, a Bangkok-based consultancy that specializes in improving supply-chain sustainability through technology. Although farmers in Thailand are unable to sell as many products as before, those who have adapted to technology will have an advantage, she said. In addition to identifying new, international sales channels by helping stakeholders improve their supply chain sustainability, VerifiK8’s web and mobile application supports traceability and audit readiness for certification. With a potential long-term effect on consumer behavior and more awareness of responsibly produced food, Alemany believes that certification will play an increasing role in aquaculture, and farms are likely to take swift action to achieve it, or a certain level of compliance, to mitigate potential risks.The coronavirus pandemic may not stop anytime soon. But it could make aquaculture stakeholders reconsider a host of areas such as hard-to-predict risks and biosecurity. As new viruses commonly arise in aquaculture in the same way that COVID-19 arose in the human population, the pandemic should force farmers to come up with risk management and crisis plans.Stakeholders may also realize the issues of disrupted supply chains, and the need to strengthen bonds between farms and processors, said Alemany.“In Vietnam, we are seeing farmers afraid of market fluctuation and reluctant to stock,” she said. “This will lead to a shortage of shrimp and fish for processing plants, but each stakeholder must connect to go through the bad (and good) times. Connection and trust among farmers, processors and buyers is key. Hopefully the pandemic will improve the relationship balance among supply chain stakeholders and support better communication through technology.” “Aquaculture may become even more data-driven and adopt technology which will benefit farmers and consumers by ensuring traceability and creating transparency,” said Corsin. “A better understanding of the risk factors for disease and the need for biosecurity will help control disease, and we may see an increasing reliance of the local market on local production.”Source: Global Aquaculture Alliance ...
Teknologi HSRT, Inovasi Pembenihan Ikan untuk Skala Rakyat
Teknologi

Teknologi HSRT, Inovasi Pembenihan Ikan untuk Skala Rakyat

·         Penataan sistem logistik induk dan benih nasional untuk perikanan budidaya terus dilakukan Pemerintah Indonesia dalam beberapa waktu terakhir ini. Upaya tersebut menjadi bagian dari perbaikan tata kelola sistem logistik induk dan benih untuk mendorong peningkatan produktivitas budi daya·         Di antara upaya yang dilakukan, adalah dengan mengembangkan inovasi teknologi pembenihan ikan untuk bisa diadopsi oleh masyarakat perikanan yang menjalankan perikanan budi daya skala kecil di seluruh Indonesia·         Inovasi teknologi skala rakyat untuk ikan Nila tersebut, oleh Balai Besar Perikanan Budi daya Air Tawar (BBPBAT) Sukabumi, Jawa Barat sengaja dirancang menjadi hatchery skala rumah tangga (HSRT) agar mudah diadopsi masyarakat·         Meski untuk skala kecil, namun HSRT memiliki keunggulan seperti bisa menerapkan efisiensi air, lahan yang tidak luas, kelulushidupan (survival rate/SR) tinggi, dan bisa melakukan pemijahan sepanjang tahun.Ketersediaan benih berkualitas yang sesuai dengan kebutuhan, menjadi syarat mutlak yang harus ada untuk bisa melaksanakan upaya peningkatan produksi perikanan budi daya nasional. Upaya tersebut menjadi bagian dari program industri benih nasional yang di dalamnya ada penataan sistem logistik pada sentra produksi budi daya.Untuk bisa mendukung program tersebut, beragam inovasi pada bidang perbenihan terus dibuat oleh Pemerintah Indonesia. Salah satunya, adalah inovasi yang berhasil dikembangkan oleh Kementerian Kelautan dan Perikanan (KKP) melalui Balai Besar Perikanan Budidaya Air Tawar (BBPBAT) Sukabumi, Jawa Barat.Direktur Jenderal Perikanan Budi daya KKP Slamet Soebjakto mengatakan, teknologi perbenihan yang berhasil dikembangkan oleh BBPBAT Sukabumi adalah teknologi untuk ikan Nila dengan skala rakyat. Teknologi tersebut dirancang sebagai hatchery skala rumah tangga (HSRT) agar bisa mendorong masyarakat di seluruh Indonesia bisa mengadopsinya dengan mudah.Menurut dia, pengembangan model pembenihan ikan skala rakyat tersebut akan memicu banyak hal positif, termasuk untuk mendukung kebijakan KKP dalam mendorong terwujudnya industrialisasi benih secara nasional. Untuk itu, teknologi HSRT diharapkan bisa menjadi hal yang mudah diterapkan di masyarakat.“Inovasi HSRT ikan nila ini merupakan bagian yang akan didorong mulai sekarang. Dengan penerapan teknologi ini, para pembenih akan mampu menaikkan produktivitas benih hingga dua kali lipat dari sistem biasa,” jelas dia belum lama ini.Benih ikan nila dalam sistem hatchery skala rumah tangga (HSRT), yang dikembangkan Balai Besar Perikanan Budi daya Air Tawar (BBPBAT) Sukabumi, Jawa Barat. Foto : Humas KKPSelain itu, Slamet menilai kalau inovasi HSRT juga akan menjadi sangat efisien saat diterapkan oleh pembudi daya ikan skala kecil. Hal itu, karena teknologi tersebut bisa menggunakan air maupun lahan dengan sangat tepat dan hemat.Dengan kata lain, HSRT dinilai sangat cocok untuk diterapkan di wilayah urban, termasuk sentra perikanan budi daya ikan yang ada di seluruh Indonesia. Pada akhirnya, inovasi HSRT akan menjadi lapangan pekerjaan alternatif bagi masyarakat perkotaan yang ingin mendapatkan penghasilan menjanjikan.“Tahun ini kita akan mulai kembangkan di masyarakat. Langkah awal saya telah menunjuk BBPBAT Sukabumi untuk mendorong diseminasi teknologi ini di dekat sentral sentral produksi budidaya ikan nila,” tutur dia. Kajian PanjangKepala BBPBAT Sukabumi Supriadi dalam keterangan resmi kepada Mongabay, menyebutkan kalau inovasi HSRT ikan Nila yang sekarang ada, sebelumnya sudah melalui berbagai kajian yang berjenjang dan dalam waktu yang lama. Proses yang lama tersebut, membuat kajian dilakukan dengan rinci dan komprehensif sampai menghasilkan teknologi yang pas dan tepat untuk bisa diadopsi oleh warga.Proses panjang untuk mendapat hasil akhir inovasi yang pas dan tepat guna itu, harus dilalui dalam hitungan waktu hingga dua tahun. Selama waktu tersebut, tim melakukan kajian yang dimulai dari menganalisa kepadatan tebar (benih), pakan, dan juga performa hasil yang akan didapatkan nantinya.“Saat ini kami sudah mendapatkan hasil yang secara teknis dan nilai keekonomian pas untuk diadopsi di masyarakat,” jelas dia.Setelah melewati proses yang panjang dan lama, inovasi teknologi yang dihasilkan akhirnya membuahkan beragam keunggulan yang akan memberi manfaat baik untuk perikanan budi daya. Bagi dia, keunggulan yang dimiliki tersebut menegaskan kalau HSRT berbeda dengan sistem biasa yang sebelumnya sudah ada dan diterapkan oleh masyarakat perikanan budi daya.Inovasi teknologi pembenihan skala rakyat untuk ikan nila oleh Balai Besar Perikanan Budi daya Air Tawar (BBPBAT) Sukabumi, Jawa Barat sengaja dirancang menjadi hatchery skala rumah tangga (HSRT) agar mudah diadopsi masyarakat. Foto : Humas KKPAdapun, rincian keunggulan dari HSRT adalah efisiensi air karena teknologi tersebut dirancang dengan sirkulasi tertutup, tidak memerlukan lahan yang luas dengan inovasi desain kolam yang bulat, kelulushidupan (survival rate/SR) tinggi yang bisa mencapai 80 persen, dan bisa melakukan pemijahan sepanjang tahun.“Selain itu yang membedakan dari sistem biasa, produktivitas dengan HSRT lebih tinggi hingga mencapai dua kali lipatnya,” papar Supriadi.Tak hanya untuk perbenihan, teknologi HSRT juga disebut bisa digunakan untuk mendorong berbagai segmentasi usaha pendederan. Bahkan, hingga 2019 lalu sudah ada banyak yang melakukan diseminasi pada kolam ikan budi daya yang ada di Kabuapten Sleman dan Bantul, DI Yogyakarta dan menunjukkan hasil yang sangat baik.Menurut Supriadi, teknologi HSRT akan bisa membantu upaya pengembangan industri benih nasional dengan memetakan di mana saja yang perlu untuk fokus dikembangkan. Untuk menuju ke sana, unit HSRT yang sudah ada perlu didorong untuk dijadikan sebagai larvae center dan sekaligus pusat benih untuk menyuplai benih langsung ke pembudi daya ikan di sentra produksi.“Di samping, balai akan kita dorong untuk terus memproduksi calon induk/induk unggul. Saya kira ini langkah konkrit bagaimana membangun sistem logistik benih yang efektif,” tutur dia.hatchery skala rumah tangga (HSRT), inovasi teknologi pembenihan skala rakyat untuk ikan nila oleh Balai Besar Perikanan Budi daya Air Tawar (BBPBAT) Sukabumi, Jawa Barat. Foto : Humas KKPKendala Perikanan Budi dayaMengutip pernyataan organisasi pangan dan agrikultur Perserikatan Bangsa-Bangsa (FAO), ada tiga kendala yang dihadapi oleh perikanan budi daya di masa mendatang. Itu adalah keterbatasan lahan yang terus meningkat akibat alih fungsi lahan, peningkatan krisis air, dan tantangan untuk meningkatkan produktivitas perikanan budi daya.Di sisi lain, agar perikanan budi daya bisa berkembang dengan baik hingga mencapai produksi yang maksimal, diperlukan pasokan pakan ikan berkualitas untuk semua pelaku usaha budi daya ikan, baik sekala besar maupun kecil. Kebutuhan tersebut, mutlak dipenuhi karena akan menentukan kualitas ikan yang dihasilkan.Bagi KKP, kebutuhan tersebut tidak akan bisa dipenuhi dari pasokan yang diproduksi oleh pabrik pakan ikan skala besar. Melainkan, harus dipasok juga dari produksi pakan ikan secara mandiri yang sedang gencar dilakukan oleh Pemerintah Indonesia dalam beberapa bulan terakhir.Pakan ikan mandiri yang diproduksi sendiri oleh pembudi daya ikan, diyakini sudah bisa setara dengan pakan ikan produksi pabrik besar yang fokus pada kualitas melalui kandungan protein yang tinggi. Tetapi, keunggulan pakan mandiri, bisa diproduksi dengan harga yang murah dan mudah dilakukan.Asisten Perwakilan FAO untuk Indonesia dan Timor Leste Ageng Herianto mengatakan, penyediaan pakan ikan murah untuk pembudi daya ikan skala kecil memang menjadi fokus dari Pemerintah Indonesia saat menjalin kerja sama dengan FAO. Fokus tersebut dilakukan, karena selama ini harga pakan ikan dinilai terlalu tinggi yang ada di pasaran.“Kalau untuk (pembudi daya ikan) skala besar, harga pakan ikan yang diproduksi pabrikan masih sangat terjangkau. Namun, bagi skala kecil ini jadi masalah,” jelas dia.Ia menyebut formula yang dihasilkan dapat menjadi solusi untuk menekan biaya produksi yang 70 persen-nya dipicu dari harga pakan yang tinggi. Ia juga memastikan bahwa produk pakan formula FAO telah memenuhi standar mutu sesuai SNI dengan kisaran protein sebesar 20 – 25 persen.“Di sisi lain, produk ini aman dari tambahan bahan bahan kimia dan biologis yang berbahaya,” tegas dia. Pengembangan produksi budi daya perikanan yang tengah dilakukan KKP sekarang, tidak lain karena keinginan Presiden RI Joko Widodo yang ingin mendorong produksi perikanan dari subsektor budi daya. Mengingat, selama lima tahun terakhir, subsektor tersebut nyaris tidak mendapat perhatian seperti halnya ‘saudara’-nya, subsektor perikanan tangkap.Sumber: Mongabay ...
Egg Sorting Technology Helps Pick Fish-Growth Winners
Teknologi

Egg Sorting Technology Helps Pick Fish-Growth Winners

Technology that had its genesis in a search for an obesity treatment could end up helping fish grow faster – without requiring more feed.Automated egg-sorting technology developed by from Tucson, Ariz.-based GenetiRate is being tested by prominent aquaculture companies and showing promising results.Explaining GenetiRate’s approach, Benjamin Renquist, the company’s president, pointed out that some people eat a lot but don’t gain weight, a consequence of fundamental differences.“Some people’s cells, to stay alive, require a lot of energy. Some people’s cells, to stay alive, require very little energy. And the same is true with fish,” he said.To measure that difference in aquatic species, GenetiRate’s patented method determines the level of the biochemical NADH (nicotinamide adenine dinucleotide) present in an egg or via biopsy in a mature living organism. NADH is central to metabolism. If more is present, the metabolic rate is higher.That higher metabolism can manifest itself in different ways, something Renquist discovered when he worked with zebra fish in an attempt to identify genes that could cause weight loss. He found that zebra fish eggs that resulted in heavier fish were those with higher initial levels of NADH.“That increase in NADH production that we were measuring was actually an increase in growth rate,” Renquist said, adding that he licensed the technology from the University of Arizona, where he did the research that lead to the discovery. GentiRate then developed products based on that technology.If the NADH reading is done on an egg or embryo, this picking of metabolic winners and losers happens before variations in feed can have an effect. So, the test detects fundamental individual differences and can be used to improve broodstock by, for instance, eliminating eggs that have a lower growth potential.GenetiRate uses a proprietary diagnostic assay and sorter to test various aquatic eggs, embryos, hatchlings and tissues to select aquatic species with greater growth potential and feed efficiency. Courtesy photo.In practice, this is done by tagging eggs with a fluorescent dye that reacts with NADH, with more dye sticking to those embryos with more NADH. Then within a machine, a green laser sweeps briefly across the eggs. The dye glows orange, a visual signal that the human eye can see in the right light.Based on this laser-induced indicator, the system identifies embryos that have higher growth rates. This information can be used as desired, such as sorting and selecting better performing individuals for breeding.To see what’s possible with this approach, consider that in the 1920s, it took 16 weeks to get a newly hatched chicken to market. By the end of the century, that time had been cut in half, as had the feed needed, according to data from the U.S. National Chicken Council. That is a model cited by Carsten Krome, a managing partner in Alimentos Ventures and co-founder of the Hatch aquaculture accelerator. The company has invested in GentiRate, in part because of the poultry industry’s example.“GenetiRate’s technology is jump-starting this development for the aquaculture sector and has the potential to get aquaculture the same results in a fraction of that time,” Krome said.Robins McIntosh, executive VP of Bangkok-based Charoen Pokphand Foods, said his company is considering GentiRate’s technology as a tool for determining the feed conversion ratio. FCR is difficult to assess, according to McIntosh but is important since feed can be a significant part of the cost in raising an aquatic species to maturity. A lower FCR can translate into a better bottom line.“The system works and does differentiate metabolic rates at early fish stages,” McIntosh said of GentiRate’s products, hinting about plans to put the technology without specifying how his company might use the tool.He noted, however, that the technology does require significant manpower in some applications. The problem is the plating of embryos, an issue Renquist said has been addressed by automating the analysis process for salmonids. Similar mechanization is on the way for tilapia and shrimp.GentiRate plans to sell sorters and is looking at other applications of its methodology. Users will pay on a per test basis, Renquist said, and there could eventually be installations in many different locations. “This test can be applied in any aquatic species. It can then be applied to land-based species,” he said. “It actually applies across all species.”Source: Global Aquaculture Alliance  ...
Acoustic Feedback Improves Automated Feeding Systems for Shrimp
Teknologi

Acoustic Feedback Improves Automated Feeding Systems for Shrimp

Shrimp feeds are the most important variable cost, source of nutrients and biological waste in semi-intensive and intensive systems. Albeit currently available feeds are generally considered adequate, there are several studies focusing on optimizing shrimp nutrition through either feed formulation or feeding protocols. As with other species, there are multiple studies and commercial reports validating production viability with less-costly, more sustainable soy-based feeds. However, feed management is the conjugation of nutritional content and feed delivery mechanism. While much research focused on nutrition and feed formulation, little effort is put into feed delivery practices. Hence, our group focuses on improving feed management techniques through systematic evaluations of different techniques.To optimize feed delivery methods, it is essential to understand shrimps’ natural feeding behavior. Shrimp are benthic grazers with limited capacity to store ingested feed which results in preferring frequent ingestion of small quantities of food. Multiple authors have reported better growth when shrimp meals were increased which also allows higher feed inputs since nutrient loading is spread over a longer time period. Reis et.al (2019) reported that when using automated feeding systems higher growth rate occurred with increasing levels of feed input.Testing soy-optimized feeds and automated feeding systems in shrimp pond productionPresently, many shrimp farms around the globe still rely on human labor to feed shrimp, therefore increasing the number of meals often results in higher labor costs. Moreover, penaeid shrimp naturally feed at night, which could logistically complicate management even more. This issue is particularly important in central America where wages are higher than in other shrimp production regions such as Southeast Asia.Utilization of automatic feeders is a solution to increase number of meals without compromising labor costs. Timer feeders have been used by the shrimp industry for well over a decade but more recently acoustic feedback feeding technology was developed and made commercially available. This is a type of on-demand feeding system that integrates live acoustic recording shrimp activity as the factor to determine when to feed. Ulman et al.  (2019) and Reis et al. (2019) have reported faster growth and higher product value for semi-intensive system utilizing acoustic feedback feeding systems.Even though by definition a timer-feeder will never be as efficient as a demand feeder, results by Reis et al. (2019) indicate that it is possible to reduce the efficiency gap between timer-feeders and demand acoustic feedback feeding systems. Although published data on automatic feeder utilization is available, there is little to no information about preferred feeding schedule in outdoor pond production environment.The goal of our work has been to systematically explore the potential for integration of automatic feed delivery systems in shrimp aquaculture, particularly in outdoor pond systems. This specific project described here had the objective of finally establishing a standard feeding protocol for timer feeders in shrimp production through the evaluation of shrimp growth fed different feed amounts through different schedules. In short, assessing if approximation to natural feeding behavior schedule (nighttime) would favor growth.As reported for previous years, it has been carried out in parallel with a commercial acoustic demand-feeding system (AQ1 Systems, Tasmania, Australia), which has allowed the validation of this technology under a practical production scenario. In addition to a practical feed demonstration using new automated technology, these data demonstrate the efficacy and performance of shrimp on soy-optimized feeds.Study designThis study was performed at the Alabama Department of Conservation and Natural Resources, Claude Peteet Mariculture Center, Gulf Shores, Alabama (USA). Pacific white shrimp (Litopenaeus vannamei) larvae were obtained from American Penaeid (Fort Myers, Fla., USA), acclimated and nursed in a greenhouse system. Juvenile shrimp were then stocked into 16 outdoor, 0.1-hectare (ha) ponds at 35 shrimp per square meter.Feed managementAll ponds were offered the same two diets: a 1.5-mm commercial diet (40 percent crude protein, 9 percent crude lipids) produced by Zeigler Bros. Inc. (ZBI, Gardners, Pa., USA) for the first four weeks, and a 2.4-mm ZBI diet with 35 percent protein, 8 percent lipid diet and fed from the fourth week on. Four treatments were set to evaluate shrimp growth performance under different feeding protocols. Feed inputs for all treatments were calculated based on a standard feeding protocol (SFP) that expects weight gain of 1.3 grams per week, a feed conversion ratio (FCR) of 1.2, and expected population based on a 1.5 percent weekly mortality during the grow-out period. All treatments were fed the same amount twice a day during the first 30 days of production and only then started the differential feed management throughout the cycle.Three timer-feeder treatments using commercial units (BioFeeder, S.A., Guayaquil, Ecuador) were used to distribute 34 meals evenly spread throughout the following schedules: Daytime (0700 to 1900), Nighttime (1900 to 0700) and 24 hours. Based on previous data, we developed a standard feeding protocol for automatic feeding systems (SPAF) for all timer-feeder treatments where feed inputs were adjusted to SFP+30 percent during the first 45 days of production, SFP+45 percent from day 46 through 60, and SFP+60 percent from day 60 through 90. The 24-hour treatment feed inputs were further increased to SFP+75 percent from day 75 through 90.A fourth treatment was also used in this experiment, which consisted of the AQ1 Systems technology. This is an on-demand acoustic feedback feeding system that integrates shrimp acoustic input through a hydrophone inside the pond and feeds accordingly. This system was initiated 30 days into the production cycle and was also set to feed ad libitum until a maximum of 16 kg per day in order to avoid water-quality degradation to critical levels. This system was also equipped with a dissolved oxygen (DO) sensor in order to further self-regulate both feeding and mechanical aeration. Each treatment was replicated in four ponds.Sampling and water qualityShrimp were sampled weekly through the entire production stage using a cast net (1.52 meters radius; 0.96 cm mesh) to collect approximately 60 individuals per pond. Pond sampling enabled growth assessment and inspection for general health. Ponds were monitored (DO, temperature, salinity and pH) at least three times a day, at sunrise (5:00 to 5:30 a.m.), afternoon (2:00 to 2:30 p.m.) and sunset (7 to 8 p.m.). For maintenance of dissolved oxygen (DO) above 3 mg/L, all ponds were supplied with one 2-HP Aire-O2 (Aire-O2, Aeration Industries International, Inc., Minneapolis, Minn., USA) as a main source of mechanical aeration and one 1-HP Air-O-Lator (Kansas City, Mo., USA) for backup and/or supplemental aeration as needed.Results and discussionGrowth rates (grams per week) for this trial are present in Fig. 2. These data validate results by various authors – including Napaupaiporn et al. (2013) . Ulman et al. (2019. and Reis et al. (2019) – that suggested better growth with utilization of the AQ1 Systems acoustic feedback system. Fig. 1: Average individual weight per treatment throughout production cycle in this study.Also, in line with reported by previously mentioned authors, this project registered higher feed inputs in ponds using the AQ1 system (Fig. 2). Although no statistical differences were observed among feed inputs for automatic feeders, both nighttime and 24-hour feeding treatments fed numerically lower feed amounts than daytime treatment. As a natural consequence of differential feed inputs, this study has found differences between shrimp fed during nighttime and 24 hours and shrimp fed with AQ1 system for all individual final weight and weight gain (g/wk). Lower feed inputs were a consequence of skipping meals during nighttime as pond management practice to avoid oxygen depletion beyond our mechanical aeration capacity. This is likely an issue related to the setup of the ponds and its limited mechanical aeration capacity during nighttime, particularly in late growth stages. Therefore, differences are not expected in an identical setup where oxygen is not a limiting factor.In short, the utilization of automatic feeders has allowed faster growth resulting in shorter production cycles, which ultimately results in higher shrimp yields. These results further validate the widely reported feed conversion ratios (FCRs) for automatic feeders across the board (Fig. 2). Fig. 2: Yield and cumulative feed input for the different treatments in this study.The main objective of this trial was to establish a new standard feeding protocol, specifically designed to automatic timer feeders. Based on the results for this trial and previously published data under identical experimental conditions (Ullman et al. 2019; Reis et al. 2019) and the results presented in this publication, it is clear that acoustic on-demand feeders are the most efficient and result in higher productivity. However, it is possible to establish high efficiency feeding protocols for timer-feeders. This is especially important for facilities that are equipped with timer feeders and would rather adjust feeding tables and protocols instead of reinvesting in higher technology acoustic on-demand feeders.As reported by Iescovitch et al.  and Ullman et al. (2019) and Reis et al. (2019), the conjunction of soy optimized diets and adequate feed management protocols in automatic feeding technologies resulted in good growth and productivity, including during this trial as well. The wide variety of production systems in shrimp aquaculture makes it virtually impossible to make broad conclusions regarding how long it would take for investment in automatic feeders to be recovered. However, it is clear that these technologies are an extremely useful tool to achieve higher productivity and a more valuable product.Perspectives The objective of this project was to update our standard feeding protocol into an optimized version for timer-feeders. Although the objective was successfully reached it remains clear that acoustic feedback systems have become the standard for optimal shrimp growth in pond culture. Therefore, future feed management work in our systems will likely focus on exploring the nutritional potential of different feeds while using the AQ1 system across all ponds.Source: Global Aquaculture Alliance ...
Japan Adopts AI for Tuna Quality Evaluation
Teknologi

Japan Adopts AI for Tuna Quality Evaluation

The Japanese Fisheries Agency has begun using an AI program known as Tuna Scope to test product quality before exporting overseas as part of its seafood export support program, according to a release.Dentsu, the company behind Tuna Scope, has also been providing its tool to the exporter Misaki Megumi Suisan Co. to ensure that it exports the highest quality tuna to its clients in Singapore and the US.The AI tool can determine the quality of a tuna based on an examination of the tail's cross-section, the same technique used by the country's tuna wholesalers. The team at Dentsu reportedly looked at 5,000 images of tuna cross-sections based on quality determination data, assessing them for taste, texture, freshness and fat characteristics. With Tuna Scope, Dentsu hopes it can create a new quality standard for tuna traders worldwide, it said.Source: Undercurrent News ...
How Genetics is Leveling The Aquaculture Playing Field
Teknologi

How Genetics is Leveling The Aquaculture Playing Field

Genetics-breeding programs are no longer limited only to affluent fish farming behemoths; there’s an increasing number of cost-effective services coming on-stream to help get small and medium sized operations on the right track.The rapid growth of the aquaculture sector has seen two different producer models come to the fore. First, there are those operations that will source their eggs from a centralized breeding program and grow them out to market size. Many companies follow this strategy, particularly in the Atlantic salmon and other salmonid sectors. In the other camp, there are those companies that have their own breeding programs in place and manage them in-house.For those with a program, genetics is essential. Without it, and thereby making parent fish selections on appearance only, farms run the risk of mating siblings, Xelect CEO, Ian Johnston told SeafoodSource.“If you’re mating brothers and sisters for any length of time then you will suffer a loss of vigor, of fecundity, and other things that will make your business unsustainable,” he said.Established in 2012, St Andrews, Scotland-based Xelect provides genetic services to aquaculture operations all over the world. Its core business is focused on managing breeding selection services. To this end, it has built up a team comprising a broad range of skillsets – incorporating aquaculture specialists, fish biologists, physiologists, quantitative geneticists, computer scientists and more. Indeed, a dozen of Xelect’s current team of 15 have doctoral degrees.“It is a big data science and it’s at the cutting-edge of many developments in life sciences, driven by genomics,” Johnston said, adding that aquaculture’s use of genetics is gradually closing the gap in its applications in both plant and terrestrial animal farming.Shared expertiseTo have such a team to maintain a genetics-based breeding program in-house would be an expensive undertaking for even the largest producer. But Xelect’s business model means companies that it works with essentially have a “fractional” but “very cost-effective” share in its team, who will then enable them to manage their own breeding program to a very high level, Johnston said.“Having your own program, but one managed by a genetics provider like us, means you don’t run into issues with egg suppliers and availability. It also allows you to differentiate your product. Many of our customers are high-end producers that have distinct brands which are associated with quality. Genetics is part of that story and their branding,” he said. “Beyond that, there’s the ability with a trait selection program to drive improvements in performance like growth – salmonids can achieve up to 10 percent improvement per generation – that’s widely achieved in the industry. Then there’s FCR, robustness, disease resistance, resistance to specific pathogens. There are lots of things you can do to improve the performance of your stock.”Another benefit is having the ability to genetically select stock that’s particularly suited to local environmental conditions, he said.“We are managing the salmonid breeding programs for some very well-known companies in the southern hemisphere. These producers are beginning to experience problems with high temperatures, due to climate change,” Johnston said. “If you’re just buying a standard egg then there’s no scope to do anything about that, but if you are running your own breeding program, then you can select fish that have a better performance in warmer summer temperatures.”Differentiated offeringXelect’s business has grown a lot in the eight years since launching out of the University of St Andrews. It’s also not alone in the marketplace, with two similarly-sized genetics service providers – one in Norway and one in North America.There are, however, some key differences.“We have set Xelect up in such a way that we can do everything in-house,” Johnston said. “We have our own laboratories, we do our own genomic sequencing, while at least one of our competitors is outsourcing things like that. And for breeding programs where things are time critical, it’s really good to have that under your control rather than sending off samples and then waiting for the results.”Johnston said this “self-sustaining philosophy” led Xelect’s to launch a new rapid response suite of services in February. Called “Xelect Express,” it provides quick access to the laboratory’s expertise for genotyping, pedigree assignment, gene expression, ploidy and sex determination.Xelect Express is a standalone offering, positioned between the company’s comprehensive Xelect Elite breeding program and its basic Xelect Direct services. The former includes full genetic analysis of a client’s available bloodstock, operational evaluations, the development of a bespoke breeding program, and all the tools and databases needed to meet its commercial objectives.“Xelect Elite is a big task in data management and project management. We are also now starting to roll-out a very user-friendly front-end for our clients so they can enter data a way that doesn’t cause mistakes and which makes it easily useable for us,” Johnston said. “Our Xelect Direct is a lower level of support, but it’s still extremely useful. It utilizes the same highly skilled staff, the same level of expertise, but it comes without the dedicated account management, and it’s on a pay-as-you-go basis. For every big company out there, there’s probably 10 wanting a little bit of steer on genetics – that’s what our Xelect Direct service does.”The Xelect Direct service, Johnston said, is for companies that aren’t quite at the level of doing a large breeding program, but still want access to proper genetic support.  “In the new Direct [service], we have recognized that most of our customers are medium-sized companies and it takes quite a bit of resource to have a full-blown breeding program management service,” he said. “Nevertheless, there are lots and lots of companies that really want to do some genetics.”Emerging technologiesWith regards to where aquaculture genetics is heading, Johnston explained that in the past five years, there has been a strong uptake of genomic selection. This involves the use of tens of thousands of markers to estimate the breeding value of parent fish.While genomic selection remains very expensive, Xelect is involved in ongoing projects aimed at addressing this barrier. Among these, it is an industrial partner in both the E.U.-led AquaFaang project – which is run from the Norwegian University of Life Science – and the U.K. Research Councils-funded AquaLeap project – coordinated by the Roslin Institute at the University of Edinburgh.“In both of these projects, which have different objectives, we are devising much, much more cost-effective ways of doing genomic selection. They will be a fraction of the current price,” Johnston said.To do this genotyping, marker panels are being used that can determine parent assignment, genomic selection, and also marker-assisted selection (MAS), which is where functional markers locate a particular genetic variant that can have a significant effect on fish traits. “There’s a whole range of new ‘precision breeding’ tests that’s coming. These are based around sequencing and they will be revolutionary, and I think we are pretty much at the forefront of that,” Johnston said. “Establishing low-cost genomic selection means that in the future it won’t be just the preserve of the few; it will be brought down to a price that it can be used by the many.” Source: Seafood Source ...
Budidaya Sehat dengan KJA Smart
Teknologi

Budidaya Sehat dengan KJA Smart

Smart dinilai mampu menurunkan bahan organik limbah budidaya di perairan terbuka Adanya polemik penataan ulang Keramba Jaring Apung (KJA) di kawasan waduk Sungai Citarum, menghantarkan berbagai solusi untuk diaplikasikan. Walaupun sebetulnya penataan ulang ini disebut Kementerian Kelautan dan Perikanan (KKP) untuk mewujudkan program Citarum Harum terkait kegiatan sektor perikanan.Solusi tersebut antara lain melalui penelitian yang dilakukan Balai Riset Pemulihan Sumber Daya Ikan (BRSDI) Jatiluhur – Jawa Barat. Unit kerja di bawa naungan Badan Riset dan Sumber Daya Manusia Kelautan dan Perikanan (BRSDM) KKP ini merilis tiga solusi hasil riset dan inovasi dalam mewujudkan program Citarum Harum yang berkaitan dengan kegiatan perikanan.Aulia Riza Farhan Kepala BRPSDI mengungkapkan, tiga solusi tersebut adalah teknologi keramba jaring apung dengan sistem management dengan resirkulasi dan tanaman (KJA Smart),  teknologi eelway, dan Culture Based Fisheries (CBF). “KJA Smart merupakan solusi jangka pendek guna mendukung kegiatan budidaya perikanan yang merupakan teknologi untuk pencegahan dan pengendalian eutrofikasi dengan mengadopsi sistem akuaponik yang telah dimodifikasi sehingga dapat diterapkan di perairan terbuka waduk/danau,” terang Aulia.Makanya, terang Aulia, berdasarkan dampak dari kegiatan budidaya, dilakukan upaya pembuatan desain sistem budidaya yang ramah lingkungan oleh tim BRSDI. Salah satunya adalah dengan sistem KJA SMART. Berdasar isu yang berkembang, sisa kegiatan budidaya menjadi bahan organik yang mempercepat eutrofikasi. “Makanya ini bagaimana cara supaya tidak terjadi eutrofikasi dari sisa kegiatan budidaya, kita desain KJA dengan model baru sehingga hampir 90 % sisa bahan organik ini tidak keluar dari badan air,” tambah Aulia.Keunggulan KJA Smart, imbuhnya, yakni dimana sisa pakan terbuang dan sisa metabolisme ikan tertampung dan terendapkan di sistem penampungan sisa pakan dan tanaman akuaponik dapat berfungsi sebagai fitoremidiasi polutan (metode untuk mencuci limbah menggunakan tanaman). Selain itu keunggulan lainnya adalah dapat menampung masukan beban pencemaran organik di perairan danau atau waduk, menghasilkan produk tanaman organik, serta dapat menjadi destinasi ekowisata dan eduwisata.Konstruksi KJA SmartPenelitian KJA ini, dilakukan berdasar penelitian yang sudah dilakukan terkait pengaruh eutrofikasi atau penyuburan perairan oleh karena aktivitas budidaya perikanan. Peneliti senior BRSDI Prof Krismono mengungkapkan dalam penelitiannya bahwa ketebalan endapan di Waduk Djuanda pada lokasi budidaya 10 cm lebih tebal dibandingan lokasi tanpa kegiatan budidaya ikan dan peningkatan unsur hara perairan terutama nitrogen (N) dan fosfor (P) yang diperkirakan berasal dari hasil dekomposisi sisa pakan ikan dari KJA yang terendapkan di dasar perairan.Berdasar sumber jurnal “Penelitian Uji Serap Polutan Organik oleh Bahan Aktif Tanaman Air, Pengendalian Eceng Gondok dan Uji Kelayakan KJA Smart” pada 2016 lalu, konstruksi KJA Smart terdiri dari tiga komponen utama. Yaitu; kolam kedap air, penampung sisa limbah pakan dan tanaman akuaponik berupa kangkung.Menurut Krismono, hasil penelitian yang sudah dilakukan sebelumnya menunjukkan kangkung digunakan sebagai tanaman akuaponik karena fungsinya. “Kegiatan KJA Smart diharapkan untuk menurunkan konsentrasi bahan organik. Dan kangkung dapat menurunkan kadar N-NO2, P-PO4, dan N-NO3.Dan hasil penelitian menunjukkan KJA Smart mampu menurunkan kandungan P-PO4, N-NO3 dan bahan organik pasca melewati tanaman akuaponik berturut-turut adalah 6,3-84,8%; 4,1 -77,7% dan 8,8-90,71%. Dimana dalam kegiatan budidaya ikan terjadi pelepasan limbah karbon, nitrogen dan fosfor. Bahan anorganik terlarut dari nitrogen (seperti NH3 ) dan fosfor (seperti PO4 3-) dilepaskan melalui ekskresi dan C anorganik dilepaskan melalui respirasi.  Selengkapnya baca di majalah TROBOS Aqua edisi 94/15 Maret – 14 April 2020  Artikel Asli: Trobos Aqua ...
Blue Genes: How Genome Research Can Boost Global Aquaculture
Teknologi

Blue Genes: How Genome Research Can Boost Global Aquaculture

Despite a number of challenges that still need to be overcome, genome sequencing has a growing range of practical applications in aquaculture and, as costs come down, it is going to be increasingly widely used.It hardly seems like 20 years ago when the Human Genome Project announced that it had sequenced “a working draft” of the human genome. Genome sequencing has become faster and cheaper since the project began and we are now able to get our individual genomes sequenced by commercial labs. But what is genome sequencing and what, if anything, does it mean for aquaculture?How genome sequencing was achieved for the Human Genome Project. Technologies vary, but the principle is the same for sequencing the genomes of aquatic species too© Credit National Human Genome Research InstituteBackgroundThe molecule DNA is often characterised as containing “the building blocks of life”, with its long chemical sequences forming the genes that control so many aspects of our physiology. Most of our genes are no different from one person to the next, but within this uniformity there are small variations which give rise to some of the characteristics that make us unique, like eye colour. The full suite of an individual’s genes is known as their genome. Put simply, genome sequencing is a way for us to read the genes in a genome.Building up a library of genomes, we can find where there are variations between individuals, and unravel how these variations affect characteristics. We can also better understand how genes interact with each other, and even with the environment, to produce variations in characteristics – such as how temperature can influence the size of fish. We can also compare genomes from one species to the next, seeing if the same genes control the same characteristics, or if similar variations or mutations lead to similar outcomes.Although currently less prevalent in aquaculture than in terrestrial farming, embracing genetics is not new. Traditional selective breeding methods rely on us looking at an individual’s phenotype – how its genes are expressed in its environment. If we see an individual grows particularly large, for example, we may want to use that individual for breeding larger offspring. In fact, genetics underlies all sorts of characteristics of interest to aquaculturists.Just over a year ago, Dr Hugues de Verdal, based at CIRAD in France, published his work demonstrating that feed efficiency is a heritable trait in Genetically Improved Farmed Tilapia (GIFT). In fact, de Verdal estimates that genetics explains around 30 percent of a tilapia’s feeding efficiency, which is no small amount. Because the trait is heritable – driven by the genes of the individuals – it is possible to selectively breed the tilapia to promote feeding efficiency. Dr Hugues de Verdal's research demonstrated that feed efficiency is a heritable trait in Genetically Improved Farmed Tilapia (GIFT)© Hugues de VerdalDe Verdal’s work is among the first to identify the genetic underpinnings of feed efficiency in aquatic species. Although he did not use sequencing in this study, de Verdal believes that embracing such techniques has substantial benefits, namely in terms of precision and predictive ability.“You will have more information about the genes given by the parents, so it is more accurate to use genomic techniques to estimate the heritability [of a trait] and to estimate the breeding values of each fish,” he explains.Sometimes the genetic basis of characteristics is relatively easy to isolate. Take antifreeze protein genes, for example, which allow some species to survive in sub-zero temperatures. Experimental antifreeze-protein-gene transfer from winter flounder into fertilised Atlantic salmon eggs was part of the early stages of transgenic salmon research.Most traits that aquaculturists desire, however, do not come from a single gene. De Verdal suspects that feed efficiency arises from a suite of genes.“We are quite sure there is no one gene which is leading all aspects of feed efficiency because it could come from a lot of different things, such as assimilation of nutrients, potentially the size of the gastrointestinal tract and expiration,” he explains. “It's probably really complex.”Genome sequencing helps untangle such complexities. The potential applications for aquaculture are many. For the hatchery operator aiming for a monosex population, understanding how genes and the environment interact on a genotypic rather than phenotypic level can, for example, precisely guide choice of temperature, which influences sex in some species. For breeders, advanced selective breeding techniques allow for efficient and precise development of strains specifically cultivated for a range of farming conditions. It may even be possible to manipulate genes that control characteristics like disease resiliency. Some researchers have even started sequencing pathogen genomes which, among other things, can help identify transmission pathways, helping improve disease management. For those who use wild broodstock, understanding the genome of the wild population can not only help manage the broodstock fishery, but also ensure that you haven’t accidentally picked up a species that looks like the one you want, but actually is something else.This is just a small sample of the potential applications, the number of which will invariably rise as aquatic-species genomic research becomes more commonplace.A machine used to sequence genomes© Kenneth RodriguesChallengesAs with any technological application, there are challenges, some of which are unique to aquatic species. As Professor Kyall Zenger at James Cook University in Australia highlights, this includes the relatively high levels of polysaccharides found in animals such as crustaceans and shrimps.“Polysaccharides are a complex compound used for defence mechanisms and other biological processes, but they inhibit sequencing,” Zenger explains. “It’s not as simple as extracting [genomes] from a terrestrial animal that has been routinely sequenced.” In fact, for most aquaculture species, there is no baseline genome sequence from which researchers can begin working. Both Zenger and de Verdal point out that building a baseline of any species can mean sequencing the genome of thousands of individuals.A further challenge relates to the highly repetitive genomes of aquatic species – and their high rates of mutations. When a genome is sequenced, we do not get a single, neatly ordered output. Genomes are sequenced in small parts, which are then put back together in the correct order. “The more complex the genome and the more repetitive it is, the more difficult it is to put back together because the [sequencing] software gets confused, so to speak,” Zenger explains.Zenger notes that genomic technology applications on aquatic species are still in the early stages of development and is confident that the technological challenges – and the lack of baseline sequences – will be overcome.For aquaculturists eager to start using genome sequencing directly in their farms or hatcheries, there is some bad news.“You can’t buy the technology off the shelf,” Zenger points out. Furthermore, although the cost involved in sequencing is declining, making research applications more accessible, it currently remains too high for many aquaculturists – except for large commercial operations working with high-value species. This, however, may be a temporary situation. Current research continues to form the basis for commercial applications, and costs continue to decline. Routine commercial use may not be that far beyond the horizon.Source: The Fish Site ...
Budidaya Udang dan Ikan di Perkotaan dengan Teknologi IoT
Teknologi

Budidaya Udang dan Ikan di Perkotaan dengan Teknologi IoT

Mimpi untuk budidaya ikan dan udang di perkotaan menggunakan kolam bundar portabel dapat terwujud dengan teknologi sensor yang bisa dikendalikan melalui internet of things (IoT).Setelah sukses di sektor pertanian dengan RiTx Bertani, PT Mitra Sejahtera Membangun Bangsa (MSMB) meluncurkan aplikasi dan teknologi untuk sektor perikanan bernama FisTx (Fishery Technology). Acara bertajuk Demokratisasi Pertanian di Era Industri 4.0, peluncuran FisTx ini digelar di Balai Desa Srigading kawasan Pantai Samas, Bantul, DI Yogyakarta pada Senin (17/2).Hesti Ana, Chief Marketing Officer MSMB menjelaskan perusahaannya merilis paket teknologi kolam bundar portabel yang bisa dikontrol dengan perangkat sensor digital yang terhubung dengan aplikasi FisTx . FisTx merupakan aplikasi android berbasis teknologi budidaya ikan. Bertujuan untuk menyejahterakan petambak ikan dan udang, FisTx hadir untuk memudahkan petambak dalam melakukan aktivitas budidaya.Baca juga: Pertimbangan dalam Menggunakan Automatic Feeder di Tambak UdangDijelaskannya, FisTx dapat digunakan untuk melakukan pencatatan data budidaya, mencapai efisiensi dalam budidaya, serta akses mitra dan pasar. Menggunakan aplikasi FisTx, petambak dapat mengetahui kondisi tambak mereka dan mendapatkan rekomendasi perlakuan yang tepat dalam budidaya.Kualitas Air, Faktor Kunci KeberhasilanRico Wisnu Wibisono, Chief Operation Officer FisTx menjelaskan perusahaannya merilis FisTx Aquagram Water Quality Checker, yakni teknologi pengukur kualitas air pada tambak, petambak bisa memantau kondisi tambak langsung dari aplikasi FisTx di smartphone mereka.“FisTx Aquagram merupakan teknologi pengukur kualitas air yang dapat mencatat kualitas air secara real-time. Petambak akan memperoleh informasi terkait durasi pemberian pakan, jarak waktu pemberian pakan, kadar oksigen, hingga suhu dan tingkat keasamaan air. FisTx Aquagram ini dapat bekerja secara kontinyu untuk empat petak tambak sekaligus,” ungkap dia.Menjadi Petambak di KotaRico menyatakan tak hanya mengembangkan teknologi yang mampu mengukur kualitas air, MSMB juga menghadirkan pond portable. Budidaya udang dan ikan pun bisa dilakukan di kota, tak harus berlokasi di wilayah pesisir.Oase Pond FisTx, Rico menjelaskan, merupakan kolam bongkar-pasang (pond portable) yang memungkinkan petambak melakukan budidaya dengan sistem resirkulasi. Bentuk lingkaran bertujuan untuk memudahkan petambak dalam memberikan pakan secara merata. Tak hanya itu, oksigen pun bisa terlarut merata sehingga memudahkan bakteri untuk bekerja mereduksi bahan organik.Baca juga: Startup Yogyakarta Tawarkan Sentuhan Teknologi di Tambak Udang“Kolam portabel ini berdiameter 10 meter dan ketinggian 1,5 meter, kolam bongkar-pasang ini bisa dipasang di lahan apapun karena perakitannya mudah. Kolam ini dapat digunakan sebagai nursery pond atau kolam pendederan dan pembesaran,” urai Rico.Peluncuran FisTx ini juga melibatkan Bank BNI yang menyediakan kredit usaha kepada petambak serta didukung oleh Direktorat Jenderal Perikanan Budidaya – Kementerian Kelautan dan Perikanan.Mitra Sejahtera Membangun Bangsa (MSMB) merupakan perusahaan teknologi pertanian, perikanan dan peternakan berbasis di Yogyakarta  Artikel Asli : Trobos AquaTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
KKP Gunakan Teknologi RAS untuk Siapkan Industri Benih Ikan Nasional
Teknologi

KKP Gunakan Teknologi RAS untuk Siapkan Industri Benih Ikan Nasional

Menteri Kelautan dan Perikanan Edhy Prabowo menyampaikan bawa teknologi pembenihan sistem Recirculation Aquaculture System (RAS) dapat meningkatkan padat tebar hingga 7 kali lipat dibandingkan dengan sistem konvensional. Teknologi ini juga mampu memangkas masa pemeliharaan, menaikkan tingkat kelulusan hidup dan tingkat keseragaman ukuran.  "Dengan berbagai keunggulan yang dimiliki, RAS dapat menjadi solusi mengatasi permasalahan kebutuhan benih ikan di seluruh Indonesia," ujar Edhy di Balai Perikanan Budidaya Air Tawar (BPBAT) Tatelu, Sulawesi Utara, Selasa (18/2/2020). Dia mengatakan, kegiatan perikanan budidaya komoditas air tawar secara khusus di Tatelu, termasuk yang terbesar di Indonesia. Ini karena ditunjang oleh potensi alam terutama kualitas air yang baik serta antusiasme masyarakat yang tinggi untuk melakukan aktifitas budidaya. “Dalam aktivitas perikanan budidaya, masalah yang timbul selain harga pakan adalah ketersediaan benih unggul. Teknologi RAS di BPBAT Tatelu merupakan jawaban akan kekurangan benih unggul di pembudidaya untuk kawasan Indonesia Timur," ucap Edhy.  Saat ini dari Tatelu sudah melayani kebutuhan hampir di seluruh Sulawesi Utara, bahkan beberapa daerah di luar Sulawesi seperti Ambon. Edhy menyadari harga benih saat ini masih cukup tinggi di beberapa daerah. Penyebabnya adalah kondisi wilayah, jarak pengantaran serta ketersediaan yang belum merata.  “Kondisi ini dapat teratasi dengan memperbanyak penggunaan teknologi RAS di seluruh Indonesia, khususnya di sentra produksi perikanan budidaya. Jika hal ini dapat terwujud, di masa depan saya harap benih akan dapat diberikan secara gratis untuk masyarakat yang ingin melakukan kegiatan budidaya,” lanjut Edhy. Dia meminta kepala daerah dan masyarakat untuk dapat memanfaatkan dengan baik keberadaan BPBAT Tatelu yang dapat menjadi pusat edukasi untuk masyarakat serta sumber pemecahan masalah yang dihadapi dalam berbudidaya. “Dengan semakin banyak produksi benih yang dihasilkan dan semakin banyak masyarakat mendapatkan edukasi akan semakin banyak pula ikan yang dapat kita produksi,” pungkas Edhy. Senada dengan Edhy, Gubernur Sulawesi Utara Olly Dondokambey yang turut hadir dalam acara tersebut menyatakan siap untuk mendukung program pemerintah memajukan perikanan budidaya.  “Khusus untuk masalah pakan, kami sudah melakukan kerjasama dengan pihak swasta untuk membangun industri pakan ikan dan ternak di Sulawesi Utara. Pihak swasta telah melakukan studi kelayakan untuk membangun industri ini di Bolaang Mongondow dimulai dengan membangun silo untuk menampung jagung dan bahan baku pakan lainnya,” jelas Olly. Sementara itu Direktur Jenderal Perikanan Budidaya KKP Slamet Soebjakto menyatakan bahwa teknologi RAS merupakan teknologi yang tepat dalam meningkatkan produktivitas pembenihan ikan dengan mengefisiensikan penggunaan air dan lahan, disamping menciptakan usaha yang minim dampak negatif terhadap ekologi. “Saat ini BPBAT Tatelu juga tengah melakukan proses rekayasa pembesaran ikan dengan teknologi RAS. Hasil perekayasaan ini diharapkan dengan menghasilkan output produksi meningkat hingga lebih dari 10 kali lipat," ungkap Slamet. Keunggulan lain dari RAS dibandingkan sistem konvensional, kata dia, karena lebih aman dari pencemaran yang terjadi di luar lingkungan perairan sehingga sanitasi dan higienitasnya lebih terjaga serta ramah lingkungan.  Selain itu, pemeliharaan yang mudah, stabilitas kualitas air lebih terjaga dan penggunaan air lebih hemat akan menjadikan teknologi pembenihan ikan intensif ini sebagai primadona baru di pembudidaya, khususnya pembenih ikan. “Dengan fleksibilitas teknologi RAS yang dapat diterapkan untuk berbagai jenis komoditas baik tawar, payau maupun laut, KKP melalui Direktorat Jenderal Perikanan Budidaya siap untuk dapat memperbanyak teknologi ini di seluruh Indonesia,“ tutup Slamet.Sumber: Sindonews.com   ...
AI Keeps an Eye on Barramundi at ‘Smart’ Floating Fish Farm Off Pasir Ris Coast
Teknologi

AI Keeps an Eye on Barramundi at ‘Smart’ Floating Fish Farm Off Pasir Ris Coast

Singapore’s first-ever smart floating fish farm, equipped with a S$1 million integrated artificial intelligence (AI) and video analytics system that detects if fish are sick and tracks their growth rates, was opened on Monday (Feb 17).Located off Pasir Ris Coast, the 3,000 sqm offshore facility houses 10 tanks, each of which can hold up to 10 tonnes of fish.The tanks work on a closed loop system that recycles water and does not release waste into the ocean. In a bid to reduce its carbon footprint, the farm uses solar power to run at least 50 per cent of its operation.Dr Michael Voigtmann, chief technical officer of Singapore Aquaculture Technologies (SAT) that owns the offshore farm, said that it can produce up to 350 tonnes of fish by 2021 when it operates at full capacity. This is at least 10 times the minimum yield that a conventional coastal fish farm in Singapore of the same size is required to produce, he addedRight now, half of its tanks are used, and the fish are sold on online home delivery platform StraitsMarket.com, which is SAT's sister company.Also read: Japan Adopts AI for Tuna Quality EvaluationSingapore Aquaculture Technologies launched its smart floating fish farm, which houses 10 tanks that can each hold up to 10 tonnes of fish.The farm’s smart system, which was developed in partnership with German engineering company Siemens, is attuned to tracking barramundi — the sole species of fish that it rears for now.Dr Voigtmann said that having a digital system largely helps to make fish farming more predictive and precise.For example, at SAT’s other Singapore fish farms built on barges and wooden platforms along the Johor Strait — none of which are equipped with its new AI system — staff members determine how well a batch of fish was growing by removing a sample of 50 or so specimens by hand and recording their lengths.However, this is not always representative of the entire fish population. Now, this AI system uses camera feeds to automatically detect the length of individual barramundi in the tanks, and then calculates the average length of the fish and the average weight of the tank’s population.Also read: A Practical Guide to Using AI in AquacultureIt also observes how entire tanks of fish react when fish food is deposited into a tank. The data collected can be used by employees to determine if the food should be changed or if the fish is sick and not ready to feed. Before this, staff members would have to personally decide whether the fish is full by watching how many of them surfaced for food, making the process subjective and imprecise, Dr Voigtmann said.The farm can also combine these two features to study which fish foods are more effective in helping the barramundi to grow — by comparing their growth rates to the types of foods offered.In handling diseases, the AI system’s cameras can detect if a barramundi has a bulging eye infection or white spots on its skin, and will deliver a warning to farm employees, who can then check on each tank in person. In the future, SAT may add more cameras to its facility that monitor abnormal swimming patterns, such as when a fish swims upward in a corkscrew pattern or isolates itself from the rest of the school — telltale signs for when it is not well.Dr Michael Voigtmann (front row, second from left), chief technical officer of Singapore Aquaculture Technologies, showing what video analytics can do in monitoring the fish population. Looking on are Mr Masagos Zulkifli (front row first from left), Minister for the Environment and Water Resources, and Dr Amy Khor (second row, first from left), Senior Minister of State for for the Environment and Water Resources.Mr Masagos Zulkifli, Minister for the Environment and Water Resources, said in his speech at the opening that this off-shore smart fish farm is in line with Singapore’s vision to bolster homegrown agri-food production to make up 30 per cent of the country’s nutritional needs by 2030.“Today, less than 1 per cent of our land is used for agriculture. This will continue to be the case as we seek to ramp up our local produce. Our food production methods must therefore adapt and improve,” he said “Food security is an existential challenge for Singapore, but it also provides the impetus to build a strong and vibrant agri-food industry, and foster national pride in homegrown produce.”Source: Today ...
Making Algae Can Get Expensive. Innovations Aim to Bring Costs Down
Teknologi

Making Algae Can Get Expensive. Innovations Aim to Bring Costs Down

Aquaculture hatcheries seek less energy-intensive methods for crucial feedstockWith high amounts of protein, vitamins, minerals and the essential fatty acids known as omega-3s, microalgae play a key nutritional role in larval shellfish culture. But they cost a lot to produce. The intensive rearing of bivalves like oysters, clams and scallops relies on the production of live algae, which is 30 percent of a hatchery’s operating costs.“The cost price per kilogram of algae is too high because of the demand for labor, water and energy,” said Sander Hazewinkel, founder, co-owner and chief commercial officer of Dutch firm LGem. “It’s currently around 300 to 900 euros. If it can be reduced to 100 euros or more, depending on the amount of algae required, the bigger your operation is, the cheaper it will become to a certain point.”Established in 2006, LGem designs and manufactures turnkey microalgae photobioreactors. After examining various algae production systems –from plastic bags and bubble columns to PVC tubes – the company launched GemTube, a glass tubular helix system that offers extreme durability and a more simplified, cost-effective form of algae production.LGem discovered that conventional production systems use a lot of power and aeration for circulation and to prevent biofouling and oxygen build-up. To address this, two of the company’s patented technologies – Wavywind and Bubblebrush – were incorporated into the GemTube. Liquid and air run through the tubes like waves, propelling the system and creating circulation with limited energy.Wavywind allows a stream of air to travel at twice the velocity of the culture fluid. This creates eddies on the liquid surface and a stirring effect that gives a desired light-dark cycle below 1 hertz. Bubblebrush produces a series of bubbles that accompanies the waves and keeps the walls of the tubes clear without the need for fast pumping. This improves the quality and productivity of algae culture.Major shellfish producers are considering the LGem system for cost-effective algae production in their hatcheries. Photo courtesy of LGem.“Air moving through the glass tubes removes oxygen and supplies carbon dioxide evenly over the whole tubular helix at 100 watts per 1,000 liters of culture, or one-tenth of the energy input of conventional tubular systems,” said Hazewinkel. “No centrifugal pumps are needed because the moving air propels the entire system. This means that we can also operate our system with just an air source and without any moving parts. This is particularly interesting for aquaculture because it often produces fragile species like Rhodomonas and Isochrysis. These perform very well in the GemTube.”Meanwhile, research at Wageningen University in the Netherlands has highlighted differences in production costs per kilogram of algal biomass depending on the systems used and whether artificial light was incorporated. The RAAQUA (Robust Algae cultivation in AQUAculture) project evaluated the cost price of microalgae production in hatcheries by comparing bubble-column systems with tubular photobioreactors under two scenarios: artificial light and sunlight with reactors located in a greenhouse.Researcher Pieter Oostlander found that increasing light levels and maintaining growth parameters at optimal values could reduce algae production costs.“Scalable production systems are always more cost efficient for aquaculture applications,” he said. “Artificial light is advised as it allows good control over all growth conditions. We were able to combine detailed information about the effects of growth conditions (light and temperature) on the efficiency of light use by the algae and calculate optimized conditions for cost efficient production in all reactor scenarios.”“Hatcheries can reduce costs and produce algae on a larger scale by using scalable photobioreactors and knowing the impact of growth conditions on photosynthetic efficiency,” he said.LGem’s GemTube has drawn the attention of U.S. firm Taylor Shellfish, which uses bags and tanks to produce liquid algae including Isochrysis, Chaetoceros, Pavlova and Tetraselmis for shellfish feed. About 130 to 150,000 litres is harvested each day from a combination of static and flow through tanks as well as over 200 bags.“We usually have seven or eight species in our system to bring in all essential elements for our shellfish,” said Taylor Shellfish Research Director Benoit Eudeline. “Our system’s overall flexibility, diversity and consistency are huge and even if some species stopped growing, we have others that would offer more or less the same lipid profile so there is no impact on shellfish growth.”Eudeline believes that the GemTube could make Taylor’s algae production more efficient in terms of increasing light availability, decreasing contamination issues and using relatively little space. It can also be operated in highly controlled conditions and designed and optimized in accordance with the algae strain of choice.Shellfish growers often produce their own algae for larval shellfish feed. Photo by James Wright.However, high costs must be considered, he said.“Replacing our system completely can be a tough proposition as it requires a lot of money,” he said. “It has to make sense and we have to make our production as cost efficient as possible but that’s only one aspect of the whole story. You might have a system that makes algae production more cost efficient but if it isn’t flexible or you cannot ensure continuous production or add different species, it becomes much more costly.”Eudeline says that the key is to determine how photobioreactors like the GemTube could fit into existing production systems. With system construction and operation, space, equipment and labor all significant costs in algae production, incorporating something new like the GemTube could be worthwhile, especially if there are less steps and labor.“Integrating such a system and producing a consistent supply of algae is extremely important,” he said. “Saving money is one thing but that’s very small compared to consistent and reliable production.”Jessica Harvey, scallop hatchery technician at the National Marine Aquarium in Plymouth, UK, agrees. To ease the pressure from commercial scallop fishing, Harvey and her team produce viable king scallop (Pecten maximus) seed. A combination of conical flasks and bag culture is their primary method of producing algae, a food source for scallop broodstock as well as juvenile fish and other shellfish.“We produce flagellates and diatoms at different cell sizes to ensure suitability for different life stages,” said Harvey. “We produce large volumes of live algae for feed with minimal maintenance and culture a variety of species within a small area.”The GemTube is likely to be a future consideration, she said, if the scale of her hatchery’s operation grows. In the meantime, she believes that algae production costs can be reduced as follows. “It’s important to establish connections with algae suppliers or local producers of stocks so if you were to require some at short notice, you have a higher chance of doing so,” she said. “Investing in training for technicians regarding common issues and how to mitigate them, such as biosecurity, can also help.”Source: Global Aquaculture Alliance ...
Pertimbangan dalam Menggunakan Automatic Feeder di Tambak Udang
Teknologi

Pertimbangan dalam Menggunakan Automatic Feeder di Tambak Udang

Pemberian pakan yang efektif dengan menggunakan automatic feeder  di tambak udang, dispenser feeder harus berada 80 hingga 100 cm di atas permukaan air. Semakin tinggi dispensener berada di atas air, semakin besar area penyebaran pakan. Namun, di kolam kecil di mana perlu untuk mengurangi area penyebaran, dispenser sebaiknya hanya berada 50 cm di atas permukaan air.Selain itu, ukuran pellet juga mempengaruhi area penyebaran pakan. Pellet yang semakin besar memperbesar area penyebaran, seperti yang digambarkan pada pemberian pakan menggunakan automatic feeder Nicovita pada gambar berikut:Gambar. 1: Pelet (Nicovita) dengan ukuran berbeda dan jarak lontar oleh feeder yang ditempatkan 1 meter di atas permukaan air tambak udang di Ekuador.Variabel lain yang perlu dipertimbangkan adalah konsentrasi oksigen terlarut di area makan. Udang yang berkumpul di bawah dan di dekat automatic feeder dapat menguras kadar oksigen, sehingga diperlukan penempatan aerator mekanik di dekatnya.Karena konsumsi oksigen yang lebih tinggi oleh udang yang berkumpul di dekat area automatic feeder, aerator mekanik seperti aerator paddlewheel lengan panjang ini diperlukan di dekat area makan untuk membantu menjaga tingkat oksigen terlarut yang memadai.Penempatan feeder pada kedalaman yang tepat juga penting untuk distribusi udang yang seragam untuk setiap unit feeder. Pengalaman lapangan menunjukkan bahwa kisaran kedalaman air terbaik untuk pengumpan otomatis di kolam tanpa aerasi adalah 1 - 1,3 meter, sedangkan di kolam intensif dengan aerasi kuat, pada kedalaman 1,4 hingga 1,6 meter. Kedalaman air yang seragam dan konsentrasi oksigen terlarut di area pemberian pakan menghasilkan distribusi optimal populasi udang di kolam.Beli autofeeder disini!Evaluasi kapasitas biomassa udang per unit feederHasil di lapangan menyimpulkan bahwa rasio biomassa per feeder yang tepat menghasilkan pertumbuhan udang, FCR dan SR yang lebih baik. Misalnya, dalam produksi udang semi intensif di tambak besar (lebih dari 4,0 ha), biomassa maksimum yang direkomendasikan untuk pemberian pakan otomatis adalah 2.000 kg udang per feeder. Untuk pertanian intensif di kolam kecil (kurang dari 1,0 ha) dengan aerasi kuat, biomassa maksimum yang disarankan adalah 4.000 kg udang per feeder.Melebihi kapasitas feeder dapat menghasilkan tingkat pertumbuhan yang lebih rendah, FCR yang lebih tinggi dan SR yang lebih rendah. Penggunaan feeder yang tidak tepat dapat menyebabkan kerusakan kualitas air dan tanah yang dihasilkan dari peningkatan bahan organik dan konsentrasi oksigen rendah. Selain itu, beban makan per feeder yang lebih besar akan mengurangi usia baterai, motor dan bagian lain dari feeder.Bioremediasi area pakanSelama siklus produksi udang dan setelah panen, area pakan yang digunakan feeder membutuhkan bioremediasi. Aplikasi yang tepat dari bakteri menguntungkan - seperti Bacillus subtilis dan Lactobacillus spp. - diperlukan untuk membantu memelihara tanah dan air tambak dalam kondisi yang memadai, dan mendukung produksi udang yang stabil dari waktu ke waktu.Akumulasi bahan organik (area bulat dari tanah yang lebih gelap) yang dihasilkan di sekitar area pemberian pakan feeder, terlihat di kolam semi-intensif di Ekuador ini - bioremediasi perlu dilakukan selama dan setelah setiap siklus produksi.Mengevaluasi teknik pemberian pakan dengan feederPercobaan yang dilakukan oleh Universitas Kasetsart vanname di budidaya intensif vaname di Thailand menunjukkan keuntungan menggunakan pemberian pakan secara otomatis daripada pemberian pakan secara manual, dengan hasil terbaik diperoleh dengan pemberian pakan otomatis dengan deteksi suara menggunakan hidrofon (Tabel 1).Ching, automatic feeding, Table 1 Parameter Hand feeding (4X) Timer feeding Sound-detection feeding   Feed conversion ratio (FCR) 1.55 1.42 1.30   Average daily growth (ADG) 0.18 0.21 0.24   Berat rata-rata (ABW, g) 15.92 16.94 24.52 Feeder yang memiliki hidrofon lebih mahal daripada feeder dengan setting timer. Untuk Itu, petani di Ekuador biasa menggunakan satu feeder dengan hidrofon di satu kolam dan menggunakan data yang didapat untuk mensetting feeder dengan timer lainnya. Setting feeder dengan timer mengikuti kurva konsumsi pakan yang dideteksi oleh feeder dengan timer. Kemudian, konsumsi pakan diverifikasi oleh anco yang ditempatkan di dekat feeder. Tabel 1. Perbandingan tiga teknik pemberian pakan yang berbeda: Pemberian makan manual, pemberian pakan dengan feeder dilengkapi timer dan pemberian pakan dengan feeder dilengkapi hidrofon untuk mendeteksi suara. Sumber: Napaumpaiporn et al. 2013(https://www.tci-thaijo.org/index.php/JFE/article/view/80653).Feeder dapat menggunakan pengumpan dengan pengatur waktu yang diprogram untuk menyiarkan pengumpanan pada interval waktu yang ditentukan, atau pengumpan yang mengeluarkan pakan berdasarkan aktivitas udang (suara).PerspektifSelain pertimbangan diatas, pada sebagian besar kasus, ada hubungan yang kuat antara konsumsi pakan dan suhu air atau konsentrasi oksigen terlarut. Penelitian lebih lanjut dengan feeder dan sensor kualitas air diperlukan untuk lebih memahami dan memprediksi perilaku pemberian makan udang pada waktu yang berbeda di siang / malam, dan di antara musim.Pemberian pakan otomatis dengan menggunakan sensor untuk berbagai parameter air - seperti konsentrasi oksigen terlarut, suhu, pH, alkalinitas, dan curah hujan - dapat menjadi alat penting untuk meningkatkan pemahaman tentang perilaku makan udang, dan dengan demikian membantu mengelola pakan lebih efisien dan mengurangi biaya tertinggi dalam budidaya udang.  Gambar 2: Kurva dari hidrofon feeder, yang mendeteksi suara makan udang, yang digunakan di tambak udang semi intensif di Ekuador. Kurva menunjukkan korelasi lemah antara konsumsi pakan dan kurva suhu atau oksigen selama jam siang dan malam yang berbeda.Diterjemahkan oleh Tim MinapoliSumber: Global Aquaculture AllianceTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
A Practical Guide to Using AI in Aquaculture
Teknologi

A Practical Guide to Using AI in Aquaculture

Artificial intelligence (AI) is already making huge improvements to the efficiency and sustainability of global aquaculture, as this practical guide to some of the best systems currently available shows.Artificial intelligence – machines that constantly learn. We’re not talking about monosyllabic Arnie-Esque Terminators nor Matrix-style floating robot squids – just the emerging apps and programs which make living in 2020 easier.XpertSea's XperCount uses cameras and machine learning applied to computer vision to count, size, weight and image shrimp in secondsThings have changed drastically since 2010 and AI is already a part of the daily lives of millions of people. No need to drive to the big city to pick up that book or tool you’ve been drooling over – just a few clicks and it’ll be delivered to your doorstep. You can avoid the indignity of asking for driving directions because of the magic of Waze and Google Maps. Even the ads that pop-up, when you’re scrolling through social media, are customized.By providing a variety of services AI has become a potent tool in strengthening various industries – especially aquaculture.Reducing waste feedFeeding represents the biggest cost to fish farmers, so optimization in this area always means better profitability. But feeding strategies are often arbitrary and dependent on people who constantly watch how much the farmed stocks are gobbling up. Pellet dispersal is based on observation or, very often, intuition.Fine-tuning feeding regimes are crucial because stocks fed too little lose valuable weight while overfeeding wastes money and pollutes local waterways. The skill of gauging when and how much to feed takes years to develop. To gain knowledge and experience, farmers remain on site every day (weekends and holidays included) for months – spending more time at work than with their families. And not every farmhand is a fish-feeding expert. But what if human skills and knowledge could be passed on to machines?The constantly learning AI of Observe Technologies gauges why feed pellets remain uneaten past a certain point, helping farmers manually or automatically adjust how much to feed, minimizing waste and maximizing profit. © Observe TechnologiesA company called Observe Technologies offer a plug-and-play AI and data-processing system to track measurable patterns when stocks are feeding. Their goal is to provide farmers' empirical and objective guidance on how much to feed.Another player, called eFishery, has developed a system which uses sensors to detect hunger levels in shrimp and fish, controlling dispensers which release the right amounts of food; the company claims this can reduce feed costs by up to 21 percent.Elsewhere, Japanese and Singaporean aquaculture technology firm Umitron Cell offers a smart fish feeder that can be controlled remotely. “Farmers are given data-driven decision-making advice to optimize feeding schedules. This reduces waste, improves both profitability and sustainability while offering users a better work-life balance by eliminating the need to be out in the water in dangerous conditions,” notes Umitron product manager Andy Davison.These systems consider weather events like storms or the sapping glare of hot summer months, helping farmers produce more seafood with fewer resources, ultimately increasing profits significantly.Preventing diseases and tracking pricesDiseases are the next big cost driver and something AI can readily address. Programs can predict disease outbreaks before they happen by annotating collected data, presenting it and applying preventive measures.In April 2017, Norway’s Seafood Innovation Cluster launched the AquaCloud platform, a cloud-based program which aims to help fish-health managers and researchers deal with sea lice, predicting or even preventing lice development in sea cages with the goal of reducing dependency on expensive medical treatments, thus minimizing stock mortality.Indian aquaculture technology start-up Aquaconnect offers FarmMOJO, a mobile application that helps shrimp farmers predict diseases and enhance water quality. “Smart technology is the key to better productivity and disease management,” says Aquaconnect CEO, Raj Somasundaram.Sensor-equipped drones and robots can also collect data such as water pH, salinity, dissolved oxygen levels, turbidity, pollutants and even the heart rates of stock – all accessible via a smartphone. One of the most innovative is SHOAL, which uses robot fish to detect underwater pollution sources near fish farms and other facilities.Through AI, farmers can remotely switch pumps, motors, aerators or diffusers on or off. Production and demand can be forecasted by altering program parameters, further improving farm efficiency and monitoring ability.Even optimizing economics during harvesting, which most farmers gauge based on educated guesswork, can be dictated by machines. XpertSeauses computer vision and AI to calculate the growth of shrimp, helping farmers predict the most profitable harvest periods. Advanced AI techniques like deep learning are used to pinpoint timeframes by continuously using machine learning on historical growth cycle data.“The company’s Growth Platform provides online management software that uses artificial intelligence to capture, ingest, store and process field data to give farmers and industry experts actionable, data-driven insights throughout the whole production cycle,” explains Valérie Robitaille, CEO of XpertSea. “This platform is used by farmers but also feed, health, genetics, and certification enterprises to provide data-driven services to farmers. The second part of our solution is the XperCount that collects critical animal data by using cameras and machine learning which is applied to count, size and weigh animals in seconds.”Through this dual solution, farmers are able to track the growth of their crops, feeding regimes and up to 20 water parameters. Very handily, the system can also predict shrimp growth 14 days in advance, based on existing data. The company goes even further by combining this shrimp growth data with market prices, making it much easier for farmers to make the right decisions.Over 600 farmers and other customers have already embraced digital solutions from XpertSea. The company is proud to report that in the past year alone, the platform has processed over 2.3 billion animal data points and optimized the performance of 6,000 crops.ConclusionsThough great strides in mechanized aquaculture are being made, full automation is still a long way off. We probably won’t see fish farms that can manage entirely without the sure hands of humans any time soon. But fully embracing and investing in AI plus automation can significantly produce more seafood to feed the growing world population, while reducing the cost and environmental footprint of aquaculture operations. Done right, AI means fish farmers can earn more and finally have more time to spend with their families. Are you in favor? Then just say AI.Source: The Fish Site ...
Energy Use in Aquaculture Pond Aeration
Teknologi

Energy Use in Aquaculture Pond Aeration

Diesel and other internal combustion engines have much lower energy efficiencies than do electric motors (Table 1), but end-use energy from these two types of power units have different relationships with primary fuels. On average, the efficiency of grid electricity is about 33 percent from primary fuel to meter at the point of use. When 1 Megajoule (MJ, a unit of measurement of energy) of primary energy in coal or other fuel is combusted at a power generating plant, an average of about 0.33 MJ can be delivered to the 2-hp the motor of an electric aerator at a shrimp farm. Small motors are about 79 percent efficient, and 0.26 MJ of energy (0.33 MJ ×0.79) will be available from the aerator motor shaft – overall efficiency of 26 percent.Boyd, aeration Pt. 2, Table 1 Electric motors Efficiency* (%) Small (<25 hp), stationary internal combustion engine Efficiency (%) 1-4 hp 78.8 Ethanol (E100) 20-25 5-9 hp 84.0 Liquid propane gas (LPG) 25-30 10-19 hp 85.5 Gasoline 20-30 20-49 hp 88.5 Diesel 28-32 Table 1. Efficiencies of small, electric motors and small, stationary internal combustion engines. *https://www.engineering toolbox.com/electrical-motor-efficiency-d_655.html.In truth, the overall efficiency at which fuel energy is converted to output shaft energy is similar for electric motors and internal combustion engines. Although internal combustion engines operating on different fuels have similar efficiencies, fuels have different energy contents per unit volume (Table 2). An engine running on ethanol will use a greater volume of fuel to produce the same energy output than will an engine operating on diesel fuel because ethanol has a lower energy content per liter than does diesel fuel. A fuel of lower energy content may be less economical or more economical than the fuel of greater energy content, depending on the price of each fuel per liter.Boyd, aeration Pt. 2, Table 2 Fuel Energy content (1) Embodied energy factor Ethanol (E100) 21.27 MJ/L 1.49 (2) Ethanol (E85) 22.58 MJ/L 1.34 (3) LPG (liquid propane gas) 23.48 MJ/L 1.12 (4) Gasoline (no ethanol) 31.80 MJ/L 1.36 (4) Gasoline (10% ethanol) 31.25 MJ/L 1.37 (3) Biodiesel 33.32 MJ/L 1.69 (5) Diesel (No. 2) 35.80 MJ/L 1.28 (4) Electricity 3.6 MJ/kW·hr 2.50 Table 2. Energy content (lower heating value) of common fuels and factors for including embodied energy in fuel energy calculations. (1) https://afdc.energy.gov/fuels/fuel_comparison_chart_pdf. (2) http://large.stanford.edu/courses/2014/ph240/dikeou1/docs/ethanolnetenergy.pdf (3) Calculated (4) http://www.iea.org/statistics/resources/manuals/ (5) https://.adfc.energy.gov/files/pdfs/3229.pdfInternal combustion engines, like electric motors, should be operated at around 75 percent full load to assure greater service life and efficiency. While engines consume fuel under no load, the percentage full-load fuel used when an engine is idling at no load is lower than the percentage of full-load electricity used by a motor running under no load (Fig. 1). The fuel consumption of an engine declines with load in an approximately linear manner, and load can be estimated from fuel use. A typical, small diesel engine uses about 0.23 L/hr. fuel per horsepower·hour (0.31 L/hr. per kilowatt·hour).Fig. 1: Load versus fuel use by internal combustion engines and current use by electric motors (prepared with information from http://dieselserviceandsupply.com/Diesel_Fuel_Consumption.aspx and from http://energy.gov/sites/prod/files/2014/04/f15/10097517.pdf).Output shaft speeds of small, internal combustion engines usually are around 3,000 rpm. The most common aerator in shrimp farming is the paddlewheel aerator, and paddlewheels usually are operated at speeds of 60 to 120 rpm. Output shaft speeds of both electric motors and internal combustion engines must be reduced for paddlewheel applications.Drive trainsPropeller-aspirator-pump aerators and vertical-pump aerators operate at the speed of their motor shafts. Only a single coupling usually is necessary between motor and aerator shaft. However, these aerator types are not as common in shrimp farming as the paddlewheel aerator.There are three main types of paddlewheel aerators. The 1- and 2-hp Asian floating, electric paddlewheel aerators, have a motor with a two directional gear-reducer mechanism mounted on floats, with a shaft upon which the paddlewheels are mounted extending from each side of the gear-reducer.Views of Asia-style, small, electric, floating paddlewheel aerators.The second type, a 5- or 10-hp aerator, which will be called a U.S. catfish pond paddlewheel aerator is used sometimes in shrimp ponds in the western hemisphere. The motor of this kind of aerator is mounted on one end of a flotation platform, there is a gearbox or other speed reduction mechanism between the motor, and a hub upon which paddles are welded to form a paddlewheel.Views of U.S. catfish pond paddlewheel aerators.In the first two kinds of aerators, the rotating shafts of the paddlewheels must be supported by bearings or other mechanisms that allow rotation with a minimum friction loss. These aerators have relatively high efficiency of energy transfer from the motor shaft to paddlewheel shaft – the efficiency usually is 90 to 95 percent.The third type of paddlewheel aerator is the so-called long-arm aerators popular in Thailand and some other Asian countries. The paddlewheel is mounted on floats installed in the pond, and the engine or motor is mounted on the pond bank. The speed of the engine or motor output shaft usually is reduced by V-belts or chains and sprockets in which two shafts (often called jackshafts) are used to diminish the motor output shaft speed to the desired paddlewheel speed.The equation for relating speeds of driver shafts to driven shafts for pulleys (sheaves) and belts are:D1 × RPM1 = D2 × RPM2where D1 and D2 = pitch or flat-face diameters of driver and driven pulleys, respectively, and RPM1 and RPM2 are speeds of the driver and driven shafts, respectively.The equation for speed reduction by chains and sprockets is similar to that for speed reduction by belts and pulleys:T1 / T2 = RPM1 / RPM2where T1 and T2 = teeth on the driver and driven sprockets, respectively, and RPM1 and RPM2 are sped off the driver and driven shafts, respectively.The principle of the jackshaft mechanism often used to reduce motor speed when driving a paddlewheel aerator from an engine or motor on the pond embankment can be explained by an example. A 12-cm pulley could be placed on the motor shaft (1,735 rpm) and a 70-cm pulley mounted on a short-driven shaft mounted in a metal frame. The driven shaft would turn at 297 rpm [(12 cm)(1735 rpm) = (70)(RPM2); RPM2 = 297] which is still too fast for the paddlewheel.The first driven shaft could have a 15-cm pulley attached to it and connected by a belt with a 50-cm pulley to a second shaft mounted in the metal frame. The second driven shaft would rotate at 89 rpm [(15 cm)(297 rpm) = (50 cm)(RPM2); RPM2 = 89] – a speed suitable for the paddlewheel. The two jackshafts would have to be firmly mounted in bearings supported in a metal frame beside the motor shaft.The output shaft of the jackshaft mechanism must be connected by a driveshaft to the aerator shaft. The drive shaft must extend downward at an angle to the shaft of the paddlewheel aerator mounted on floats on the pond. This usually is accomplished by connecting shafts with the aid of universal joints. At many farms, directional gear mechanisms also are used in the drive train to allow power to be distributed to multiple floating paddlewheels.The devices used to slow rotation speeds, connect shafts, and change directions of power transmission in the drive train incur energy losses. Typical efficiencies are V-belt drives, 90 to 95 percent; roller chain drives, 95 to 98 percent; gearboxes, 85 to 90 percent. Energy loss is small (~1 to 2 percent) in couplings that are properly designed and installed, but misalignment of couplings and vibrations in shafts results in much larger losses of energy.At Asian shrimp farms, the shafts between the driver shaft of the jackshaft mechanism and the aerator shaft usually is a long, 3.75 to 5 cm diameter galvanized water pipe which vibrates considerably and misalignment between shafts and couplings are obvious. There are no studies (to my knowledge) of energy loss in the drive trains of long-arm paddlewheel aerators. The overall loss is likely at least 30 to 40 percent when only one aeration unit is operated from a motor or engine of a long-arm aerator. Greater losses no doubt are incurred with multiple long-arm aerators powered from a single-engine or motor.Potential for energy conservationThe large, floating electric paddlewheel aerators used on U.S. catfish farms are about 30 percent more efficient in transferring dissolved oxygen than are floating, electric aerators used in Asia. Based on the “rule of thumb” of 2.5 hp/MT shrimp for Asian paddlewheel aerators, the aerator rate could be reduced to 1.75 hp/MT of shrimp by use of the U.S.-style paddlewheel aerators. The drive train efficiencies are probably about 70 percent for long-arm aerators and 90 percent for Asian, floating, electric paddlewheel aerators. As a result, about 3.22 hp/MT of shrimp should be required for long-arm paddlewheel aerators. Energy use would be 11.5 GJ/MT of shrimp with Asian floating, electric aerators.By using long-arm aerators, the energy use would be increased by the ratio of 3.22 hp/MT/2.5 hp/MT, which would result in the energy use of 14.8 GJ/MT. Likewise, by use of the larger US floating paddlewheel aerators, energy use could be reduced to 8.1 GJ/MT. According to an average aeration schedule of 16 hr./day and 80 days/crop, aerators would run for 1,440 hours/crop or 4,637 hp·hr for a diesel-powered, long-arm aerator. At fuel consumption of 0.23 L/hp·hr, 1,067 liters of diesel fuel would be consumed per MT of shrimp. This amounts to 38.2 GJ/MT of shrimp produced.PerspectivesThe estimates above are for direct energy use. Applying embodied energy factors for fuels from Table 2 give total energy use as the U.S. style, floating, electric paddlewheel aeration, 20.25 GJ/MT shrimp; Asian style, floating, electric paddlewheel aerator, 28.8 GJ/MT shrimp; electric-powered, long-arm aerator, 37 GJ/MT shrimp; and diesel-powered, long-arm aerator, 48.9 GJ/MT shrimp.These calculations are based on certain assumptions and obviously subject to uncertainty, but they suggest that the efficiency of shrimp pond aeration could be improved to save a considerable quantity of energy. Assuming that 4 million MT of shrimp are produced in aerated ponds, each 1 GJ/MT reduction in energy use would reduce energy use in penaeid shrimp farming by 4 million GJ or roughly 830 million kW·hr (71,367 MT of oil or 488,234 barrels of oil equivalent). There would be both energy conservation and farm-level economic benefits to improving the energy efficiency of shrimp pond aeration.Source: Global Aquaculture Alliance ...
Energy Use in Aquaculture Pond Aeration Part 2/2
Teknologi

Energy Use in Aquaculture Pond Aeration Part 2/2

Electric motorsSynchronous induction, alternating current motors of different types and sizes are used to power aerators. Smaller electric motors (1 to 3 hp) often are single-phase and operate on 110-120 volts (V) or 208-230 V, while larger motors usually are three-phase and operate on 208-230 V or even 460 V. Motors usually are rated at full load to require a specific current measured in amperes (Table 3); the amperes required double between 115 V and 230 V motors and between 230 V or 460 V motors.Boyd, aeration Pt. 1, Table 3 Motor power rating (hp) Single phase (115 V) Single phase (230 V) Three phase (230 V) Three phase (460 V) 1 16 8 3.6 1.8 2 24 12 6.8 3.4 Table 3. Full-load amperes for single-phase and small, three-phase electric motors Source: http://mechreps.com/PDF/MRI_Formulas_Conversions.pdfThe efficiency of electric motors is calculated as the energy output by the motor shaft (brake power) divided by the energy input to the motor (wire power) as follows:kW = Brake hp × 0.746 ÷ Motor efficiencyThe typical efficiencies of small electric motors are provided in Table 4. Motors should be operated at around 75 percent full load at which service life and efficiency are greater than at full load. A 10-hp, 230 V, three-phase motor operated at a brake power of 7.5 hp would use around 6.32 kW or 6.32 kW·hr of electricity per hour.Boyd, aeration Pt. 1, Table 4  Electric motors Efficiency 1 (%) Small (<25 hp) stationary internal combustion engine Efficiency (%) 1-4 hp 78.8 Ethanol (E100) 20-25 5-9 hp 84.0 Liquid propane gas (LPG) 25-30 10-19 hp 85.5 Gasoline 20-30 20-49 hp 88.5 Diesel 28-32 Table 4. Efficiencies of small, electric motors and small, stationary internal combustion engines. Source: https://www.engineering toolbox.com/electrical-motor-efficiency-d_655.htmlThe amperes of electricity used by a motor is roughly in direct proportion to load between 50 and 100 percent full load (Fig. 1). The amperes drawn by an aerator motor can be easily measured with an ammeter during motor operation and the approximate load estimated. There is a substantial no-load current by electric motors, and they waste electricity when substantially under-loaded. The amount of power required to operate paddlewheel aerators increases with greater paddlewheel depth at any rotation speed. Attention to the depth of paddle tip submergence is important because it can change as the floats for aerators shift during operation. This results in greater or lesser submergence of paddles which can lead to overloading or under-loading of motors.Fig. 1: Load versus fuel use by internal combustion engines and current use by electric motors (prepared with information from http://dieselserviceandsupply.com/Diesel_Fuel_Consumption.aspx and from http://energy.gov/sites/prod/files/2014/04/f15/10097517.pdf).The rotation speed of electric motors varies with the number of magnetic poles in the motor (Table 5). Motor slip under-load reduces output shaft speed by 3 to 5 percent in 1 to 5 hp motors and by around 2 to 3 percent in motors of 7.5 to 20 hp. Motors for paddlewheel aerators usually have a shaft speed of about 1,735 ppm. By contrast, paddlewheels, depending upon their diameter, transfer oxygen most efficiently at 80 to 120 rpm. Motors that turn at such low speeds are more expensive, and speed reducers are placed in the drive train of aerators to allow higher speed motors to be used.Boyd, aeration Pt. 1, Table 5 Magnetic poles Electrical frequency, 50 Hz Electrical frequency, 60 Hz 2 3,000 3,600 4 1,500 1,800 Table 5. Electric motor rotation speed as related to a number of magnetic poles of motor and electrical frequency. Source: https://www.engineeringtoolbox.com/synchronous-motor-frequency-speed-d_649.htmlThere also is considerable use of propeller-aspirator-pump aerators in shrimp ponds. Most of these aerators have two-pole motors that rotate at about 3,600 rpm (Table 5). This type of aerator does not transfer as much oxygen per unit of energy if it is supplied with a four-pole motor. Vertical pump aerators for aquaculture typically are supplied with a four-pole motor.When electric motors are started up, an inrush of electric current is necessary to start the rotor and accelerate the shaft to full speed. For single-phase motors of 1 to 10 hp, the inrush current is about three times the full load motor current requirement in amperes. For three-phase motors, the inrush current is about twice the full load current. Large motors usually are started with a motor controller (often called a motor starter) with fuses that withstand the large ampere input at startup. Next Part of The Article: https://www.minapoli.com/info/energy-use-in-aquaculture-pond-aerationSource: Global Aquaculture Alliance ...
Energy Use in Aquaculture Pond Aeration Part 1/2
Teknologi

Energy Use in Aquaculture Pond Aeration Part 1/2

Types of aerators, fuels and electric motorsGlobally, most farmed shrimp is produced in mechanically aerated, outdoor ponds.Mechanical aeration is a major component of energy use in shrimp farming. Around 4 million metric tons (MT) of the roughly 5 million MT of farm-reared penaeid shrimp in 2016 were from mechanically aerated ponds. The amount of aeration used in shrimp ponds has not been carefully studied, but shrimp farm managers often use a “rule of thumb” that each 300- to 500-kg increment of shrimp production requires 1 hp of aeration (3.33 to 2.0 hp/MT shrimp). Up to 1.5 MT/ha of shrimp can be produced without aeration, but this quantity usually is not subtracted from the production goal in calculating the aeration rate in order to allow a safety factor.Determination of aeration rate from practical experience is not exact, but the complexity of dissolved oxygen budgets in aquaculture ponds makes it impossible to accurately calculate the aeration rate using equations based on hourly oxygen demand of the water, aerator oxygen transfer efficiency, minimum acceptable dissolved oxygen concentration, and water quality characteristics as done for wastewater treatment basins. Practical experience and monitoring of dissolved oxygen concentration remains the common ways of deciding how much aerator horsepower to install in ponds and for establishing schedules for daily aerator operation.Small, electric motors use about 1 kWhr (a kilowatt-hour is a unit of energy equal to 3.6 megajoules) electricity per horsepower-hour of operation. The amount of energy used per MT of shrimp at an aeration rate of 2.5 hp/MT shrimp with aerators operated in ponds for an average of 16 hours a day during an 80-day grow-out period is quite large. Amounts of electricity (and energy) per hectare will increase steadily as production goal in MT per hectare increases, but the amount of energy applied per MT of shrimp for aeration is 11.5 GJ/MT (2.5 kW/MT ×16 hours/day × 80 days/crop × 0.0036 GJ/kWhr; GJ = gigajoule, a unit of measurement of energy) and constant across all production intensities.An Asia-style, small, electric, floating paddlewheel aerator.There are several types of aerators; different methods of powering aerators; and energy efficiencies of motors, engines and drive trains differ. The experience-based rule for aerator rate mentioned above was developed years ago in Asia for small 1- or 2-hp floating, electric paddlewheel aerators (image 1 below) that were widely used in shrimp ponds and for 1- to 2-hp propeller-aspirator-pump aerators (image 2 below) that also have received appreciable use in shrimp farming. Over the years, shrimp farmers have learned to fabricate and use less expensive, but also less efficient versions of factory-manufactured aerators. A discussion of the factors influencing the efficiency of energy use in shrimp pond aeration is overdue.Aerators often are powered by electricity supplied by national or regional grids. Electric generators, usually powered by diesel engines located onsite, may also provide electricity for aeration. Fuels differ in energy content (Table 1) and energy also is used to produce these fuels. The total energy use incurred for fuel is its energy content plus the amount of energy required for its production (embodied energy). Total energy use may be estimated by multiplying the amount of each fuel used by the embodied energy factor for that fuel (Table 1). Boyd, aeration Pt. 1, Table 1 Fuel Energy content (1) Embodied energy factor Ethanol (E100) 21.27 MJ/L 1.49 (2) Ethanol (E85) 22.58 MJ/L 1.34 (3) LPG (liquid propane gas) 23.48 MJ/L 1.12 (4) Gasoline (no ethanol) 31.80 MJ/L 1.36 (4) Gasoline (10% ethanol) 31.25 MJ/L 1.37 (3) Biodiesel 33.32 MJ/L 1.69 (5) Diesel (No. 2) 35.80 MJ/L 1.28 (4) Electricity 3.6 MJ/kWhr 2.50 Table 1. Energy content (lower heating value) of common fuels and factors for including embodied energy in fuel energy calculations. 1: https://afdc.energy.gov/fuels/fuel comparison_chart_pdf. 2: http://large.stanford.edu/courses/2014/ph240/dikeou1/docs/ethanolnetenergy.pdf 3: Calculated. 4: http://www.iea.org/statistics/resources/manuals/ 5: https://.adfc.energy.gov/files/pdfs/3229.pdf The energy contents of fuel allow determination of the volumes of each fuel necessary to provide the same amount of energy at a specific motor or engine efficiency. For example, 1.68 liters of fuel-grade ethanol (E100) would be required to obtain the same amount of energy provided by 1.0 liter of No. 2 diesel fuel (35.80 MJ/L diesel fuel ÷ 21.27 MJ/L ethanol = 1.68; MJ = megajoule, a unit of measurement of energy). Likewise, 9.94 kWhr of electricity represents the same amount of energy as does 1 liter of No. 2 diesel fuel. Electricity generating plants convert primary energy in coal and other primary fuels with an efficiency of around 40 percent, and there is an additional loss of about 7 percent of the original primary energy in transmission of electricity through the grid – overall efficiency of about 33 percent. Larger generators are more efficient than smaller generators in converting the energy of diesel fuel to electricity (Table 2), but larger units are only 35 to 38 percent efficient, and additional losses will occur in transmission to aerator motors. Boyd, aeration Pt. 1, Table 2 Rated output (kW) Fuel use at 75% load (L/hr) Energy output at 75% load (% input) Energy output at 75% load (kW/L) Energy output at 75% load (MJ/L) 25 7.00 26.9 2.65 9.65 50 13.25 28.4 2.83 10.19 100 21.95 34.3 3.42 12.31 150 31.79 35.4 3.54 12.74 200 41.64 36.1 3.60 12.96 250 51.48 36.5 3.64 13.10 500 99.92 37.6 3.75 13.50 750 148.75 37.9 3.78 13.61 1,000 197.20 38.1 3.80 13.68 Table 2. Typical fuel use and energy output for different sizes of diesel-powered generators. Source: https://www.dieselserviceandsuply.com/Diesel_Fuel_Consumption.aspx.   Energy efficiency from primary fuel is roughly equal for electricity from the national or regional grid and from onsite generators. The cost of primary fuels per kilowatt-hour generated is less for large power plants than for smaller diesel generators and grid electricity usually is less expensive than electricity generated at shrimp farms.Next Page of The Article: Energy Use in Aquaculture Pond Aeration Part 1/2 ...
RAS Specialist Begins Pangasius Fingerling Improvement Program in Vietnam
Teknologi

RAS Specialist Begins Pangasius Fingerling Improvement Program in Vietnam

Recirculating aquaculture system (RAS) specialist Alpha Aqua is piloting a new model for raising pangasius fingerlings in Vietnam, it told Undercurrent News.In recent years the inconsistent supply of fingerlings has emerged as one of the key factors in making pangasius a tricky species to work with, with low survival rates and generally poor quality contributing to low supply and historically high prices in 2018.This has prompted investment in R&D among some key players in the sector, including Vinh Hoan Corporation, Viet Uc Seafood Corporation, and Pharmaq.A huge swathe of Vietnam's production remains small-scale, independent farmers, which may not benefit from the investment being carried out by the biggest firms. Instead, Alpha Aqua -- working in Vietnam with R&D and consultancy firm Fresh Studio -- plans a model which can quickly benefit the smaller farms.Pangasius raised in the NANO RAS at 20 days oldIt aims to develop protocols around the use of a small turnkey filtration unit, called a "NANO RAS", at sites where it will raise pangasius eggs to 30 days old, creating "champion" fingerlings with far higher survival rates and strength than are currently the case."Traditionally eggs are hatched and put into a nursery ponds where you pretty much hope they survive; you get quite low survival rates and quality," Alban Caratis of Fresh Studio told Undercurrent."Our plan is to sell 1 gram fingerlings to nursery farmers 'pre-nursed'. We'll control their light, water temperature, feed, and so on, so they will be very strong. But selling them at 1g means nursery farmers are not cut out of the chain -- they get much higher-quality products to sell, and buying them in at 30 days old also means they can run more growth cycles per year, so it should be win-win."Alpha Aqua's chief operating officer for veterinary and biological farmer expertise, Ramon Perez, acknowledged that margins at every step of the pangasius farming business are tight, and the intention is to improve that, not cut someone's margins even finer. He suggested the nursery farmers who join Fresh Studio and Alpha Aqua's service will also be invited to help test another innovation it and Fresh Studio is working on -- a water treatment "box" which floats in ponds, acting as a "third lung" and increasing carrying capacity and ecosystem stability. Pilot trials have already begun on this product, producing very promising results in boosting the productivity of tilapia ponds. "In this way, I hope we are starting to create a holistic model of services which can really make a difference to pangasius farming," said Perez.Source: Undercurrent News ...
KKP Bangun Platform Jejaring Bisnis Kembangkan Wirausaha Perikanan
Teknologi

KKP Bangun Platform Jejaring Bisnis Kembangkan Wirausaha Perikanan

Kementerian Kelautan dan Perikanan (KKP) membangun platform jejaring bisnis dalam rangka mendorong tumbuhnya jiwa wirausahawan serta membangun usaha rintisan di sektor kelautan dan perikanan, dengan harapan dapat berkontribusi untuk menurunkan angka pengangguran nasional. Kepala Badan Riset dan Sumber Daya Manusia (BRSDM) KKP Sjarief Widjaja dalam rilis yang diterima di Jakarta, Selasa, mengungkapkan bahwa KKP melalui BRSDM telah membangun sebuah platform jejaring bisnis bernama JALA, atau akronim dari Jejaring Alumni Pendidikan Kelautan dan Perikanan. “Platform ini bertujuan untuk menghubungkan stakeholder, peserta didik, dan alumni di bidang usaha kelautan dan perikanan,” ucap Sjarief Widjaja. Ia mengutarakan harapannya agar platform jejaring bisnis tersebut dapat memberikan hasil yang cukup berarti dalam mewujudkan SDM yang maju di sektor kelautan dan perikanan. Baca juga: KKP Luncurkan Program E-jaring Sebagai Solusi Kartu Pra Kerja di Masa COVID-19 Sebelumnya, Menteri Kelautan dan Perikanan Edhy Prabowo menginginkan mahasiswa dapat membantu meningkatkan kualitas SDM sektor kelautan dan perikanan nasional. "Mahasiswa adalah orang yang cerdas yang biasanya bisa melakukan apa saja di lapangan. Begitu menghadapi kesulitan, dia tidak akan berhenti di tengah jalan kesulitan. Selalu berusaha mencari jalan keluarnya," kata Menteri Edhy ketika menerima Himpunan Mahasiswa Perikanan Indonesia (Himapikani) di Kantor KKP pada 29 November 2019. Himapikani merupakan organisasi yang beranggotakan mahasiswa perikanan dari 103 kampus di seluruh Indonesia. Menteri Edhy mengingatkan Indonesia memiliki potensi budidaya perikanan yang butuh keikutsertaan Himapikani dalam pengembangannya.Baca juga: Kita Disibukkan Kartu Prakerja, Tak Sadar Ada Aplikasi Belajar Ternak Lele Buat Amatir Menurut dia, budi daya perikanan Indonesia tidak kalah dari negara-negara lainnya. Ia berpandangan sektor ini juga mampu berkontribusi terhadap pertumbuhan ekonomi Indonesia yang saat ini sudah cukup baik di antara negara-negara G-20. "Budi daya adalah kunci. Panjang pantai kita itu nomor dua di dunia setelah Kanada. Tapi dalam berbudidaya di wilayah pantai, kita baru memanfaatkan 10 persen saja. Luasan tambak udang kita tidak lebih dari 300.000 hektar saja," jelas Edhy.Sumber : Antara NewsTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
Digitalisasi Bahan Alam Laut Indonesia
Teknologi

Digitalisasi Bahan Alam Laut Indonesia

Kementerian Kelautan dan Perikanan (KKP) telah melakukan digitalisasi bahan alam laut Indonesia. Hal ini ditandai dengan diluncurkan Aplikasi ‘Inamarin: Inventori Bahan Alam Laut Indonesia’ yang dilakukan Badan Riset dan Sumber Daya Manusia Kelautan dan Perikanan (BRSDM), Selasa (3/12).Aplikasi ini berupa gudang data/inventori bahan alam laut yang ada di Indonesia. Selain dalam bentuk aplikasi, Inamarin juga dicetak dalam bentuk buku.“Ini adalah kelebihan konsepsi bergerak di era digital. Kita tidak perlu mengirimkan tim survei tapi kita punya pasukan di seluruh Indonesia. Perlu kita laporkan, kita memiliki 5.000 penyuluh, 600 peneliti, 8.000 siswa perikanan dari 14 Politeknik KP (Kelautan dan Perikanan) yang tersebar di seluruh Indonesia,” ujar Kepala Badan Riset dan Sumber Daya Manusia Kelautan dan Perikanan (BRSDM) Sjarief Widjaja.Inamarin merupakan aplikasi yang dikembangkan oleh Balai Besar Riset Pengolahan Produk dan Bioteknologi Kelautan dan Perikanan (BBRP2BKP), satuan kerja BRSDM.Melalui aplikasi Inamarin, peneliti, akademisi, dan semua pemangku kepentingan dapat mengakses data ke lebih dari 800 senyawa, 435 species, 320 artikel dari 6 komoditas utama bahan alam laut Indonesia. Antara lain, invertebrata (seperti spons, karang, moluska, teripang, dan tunikata), mikroorganisme (seperti bakteri dan kapang laut), ikan, rumput laut, mikroalga, dan mangrove.Sjarief mendorong seluruh peneliti lingkup BRSDM dapat meningkatkan taraf hasil riset pada tahap implementasi, khususnya di beberapa Desa Inovasi sehingga memberikan dampak yang semakin nyata dalam pembangunan SDM Kelautan dan Perikanan. Sumber: DARILAUT.ID ...
Optimalisasi Pelayanan Publik, KKP Luncurkan Aplikasi INTRA D-Lan
Teknologi

Optimalisasi Pelayanan Publik, KKP Luncurkan Aplikasi INTRA D-Lan

Guna mengoptimalisasi pelayanan publik, Kementerian Kelautan dan Perikanan (KKP) meluncurkan inovasi pelayanan publik berbasis teknologi informasi berupa aplikasi Intra D-Lan di Kantor Pusat KKP, pada Selasa 26 November 2019, Jakarta.Peluncuran ini secara resmi dilakukan oleh Budi Sulistiyo Kepala Pusat Data, Statistik, dan Informasi, dan dihadiri oleh para pengguna jasa Pelayanan Terpadu Satu Pintu (PTSP) KKP dan perwakilan unit eselon I di KKP.Aplikasi INTRA D-LAN ini ditunjukkan untuk mempermudah pengguna jasa dalam pengurusan dokumen perijinan, transparansi memberikan urutan pengguna jasa yang dipublikasikan, serta mengontrol pengguna jasa yang dikuasakan di PTSP KKP.Melalui fitur tracking yang dimiliki aplikasi INTRA D-LAN, para pengguna jasa dapat dengan mudah mengetahui tahapan proses perizinan yang diajukan.Untuk menggunakan aplikasi ini, para pengguna jasa dapat mengakses INTRA D-LAN secara mandiri melalui telepon seluler, perangkat komputer atau laptop secara mandiri melalui halaman http://ptsp.kkp.go.id/antrian/login.  Sumber: KKP News ...
Shrimp, Pangasius Next After RAS Tilapia Product Trial More Than Triples Productivity in Ponds
Teknologi

Shrimp, Pangasius Next After RAS Tilapia Product Trial More Than Triples Productivity in Ponds

The MARES project MVP designThe first commercial-scale trials of a new recirculating aquaculture system (RAS) technology in Vietnam have produced strong results for tilapia farmers, project organizers Fresh Studio and Alpha Aqua told Undercurrent News.Tested with tilapia for its "greater robustness and  the wide availability of references in literature", the next stage of the technology's developments will be designed for use in shrimp and pangasius ponds -- Vietnam's most economically important aquacultured species -- they said.The device in question is a water treatment "box" which floats in ponds, acting as a "third lung" and increasing carrying capacity and ecosystem stability. In the trial, three control ponds were stocked at three fish per-square-meter, while the treated ponds were stocked at 15 fish per meter square -- the reference for the prototype's design capacity."With the application of the prototype technology the productivity in the treatment [ponds] reached 16.92 [metric] tons [per hectare, per crop]. The productivity was therefore multiplied by a factor of 3.8 compared to the controls, in which the productivity reached 4.5t/ha/crop," said Fresh Studio and Alpha Aqua in a report developed for the Dutch ministry of agriculture, nature, and food quality, which often funds aquaculture improvement programs.The average survival rate in the prototype's ponds was 82.4%, compared with 79.3% in the controls. Average feed conversion ratio (FCR) was 1.36, 8.2% lower than in the controls. Boiled to the simplest and, perhaps most important number; the prototype meant $0.19 extra profit per kilogram of fish harvested.These benefits are meaningless if the prototype is not affordable to the average Vietnamese farmer for whom it is designed, and this was the forefront of the development process. Based on the prototype's performance -- which has prompted Fresh Studio and Alpha Aqua to begin work on several improvements already -- they expect farmers would spend $3,500 per 500-meter-square pond, and could break even in under four years. Over 10 years, farmers should be able to multiply revenues from their farms by a factor of 50, they estimate. On top of this, improvements to the initial design could bring break-even point down from four years to just two. Made of recycled plastic, the creators estimate the device should last for up to 30 years."We're happy with the initial trial results, in terms of affordability," Alban Caratis of Fresh Studio told Undercurrent. "When you consider FCR alone, using 8% less feed [which makes up between 50% and 70% of farmers' expenses] should mean significant savings. And that's before improvements."What next for the project?This "minimum viable product" will be followed up by a "minimum marketable product" (MMP), to be developed and piloted at a commercial scale with two groups of farmers in the Mekong Delta. One will focus on integrating the MMP in a "service delivery model" for small-scale intensive shrimp farmers, while the second will focus on integrating it for pangasius nurseries, "which will grow high-quality fry produced in an indoor and fully controlled hatchery system developed by Alpha Aqua and Fresh Studio".This will, therefore, be developed with the intention of applying the technology to pangasius nurseries and intensive shrimp farming systems on a wider scale. In the meantime, the Mekong Aquaculture Solutions, or MARES, the project -- backed by the Dutch government -- will run demo days across the region in a bid to raise acceptance of new technologies. "In January we'll start those demos," Caratis told Undercurrent. "We'll gauge interest, get some critical feedback, and -- we hope -- find a small number of early adopters who'll want to work with us in developing the technology."The aim is to bring these farmers into a program through which MARES will sell or lease the technology, as well as provide ongoing training and support services to shrimp producers.Then, when it comes to more extensive commercial trials of the updated design, these farmers will put the MMP to use for a year or two, capturing performance and economic data. "We hope these early adopters can become like our ambassadors, and that we will be able to use their farms in the future for further demos" said Caratis.The project is looking at a conservative, long-term timeline, illustrating Alpha Aqua's desire to be a partner to the Vietnamese a sector, and not simply "drop some tech and run," said the firm's COO for veterinary and biological farmer expertise, Ramon Perez.Work with pangasius nurseries has already begun, the pair revealed.  "The jump from tilapia to pangasius was fairly easy to make," said Caratis. "We're working with pangasius nurseries because that's such a key area in need of improvement in Vietnam." The project is working with Can Tho University and its students at some of the earliest open days.Source: Undercurrent News ...
Veramaris Runs Away with F3 Oil-Alternative Contest
Teknologi

Veramaris Runs Away with F3 Oil-Alternative Contest

Veramaris, a joint venture between DSM and Evonik, won the Future of Fish Feed F3 Fish Oil Challenge by a wide margin, selling about 90 percent of the total fish oil alternatives produced for the contest by all participants.CEO Karim Kurmaly was presented with a $200,000 prize at the Global Aquaculture Alliance’s annual GOAL conference, held this year in Chennai, India. Kurmaly said winning the prize – logging 769,038 kg of the 850,000 kg submitted for the two-year contest – required a lot of “sacrifice” from his team.“A lot of weekends. A lot of hard work. Work-life balance went out the window. We decided to give it our all,” said Kurmaly, who also credited “courageous” leaders in Norway and Chile who incorporated Vermaris’ natural marine algal oil into their salmonid feeds. “I’d like to thank those farmers that helped us along this way.”Kurmaly added that the rise in awareness for alternative feed ingredients that do not deplete marine resources has been spearheaded by its retailer partners, including Tesco, Match, Kaufland and others.Can corn fuel aquaculture’s growth? Veramaris says yes“Aquaculture has the opportunity to provide ‘beyond protein.’ The rate of omega-3 EPA-DHA algal oil adoption is accelerating,” Kurmaly told the Advocate. “This has all happened in the past 12 to 18 months. Our business model is not only to provide a product solution. We work with all stakeholders along the value chain from farmers, feed millers, processors, certification bodies and retailers to create value and capture value in seafood. We help create the pull and we do this by working along the entire value chain. Supporting to create and capture value is what we do for with partners.”Norway-based Mowi, the world’s largest Atlantic salmon producer, earlier this year committed to test the winning formula from the F3 Fish Oil Challenge, along with China-based Yuehai Feed Group and AlphaFeed. The companies will provide the results of their trials through the F3 Feed Innovation Network.That Veramaris won this contest with production solely from two pilot facilities – one in Slovakia and another in the United States – is doubly impressive given that its full-scale commercial plant in Blair, Nebraska, USA, only came online in July 2019, too late to contribute to the F3 contest. Veramaris has repeatedly claimed that the Nebraska plant is capable of producing 15 percent of the global salmon aquaculture demand for the omega-3 fatty acids EPA and DHA, which Kurmaly said are “essential for brain, eye and hearth health.”The first F3 challenge, won by Guangdong Evergreen Feed Industry Co., Ltd., illustrated that aquafeed ingredients and proteins that do not contain any marine resources can be produced at scale. Producing a fish oil substitute, a far more difficult challenge, gives Veramaris an edge, said Kurmaly.“Our customers prefer an oil. Additionally, our natural marine algal oil has an EPA & DHA concentration above 50 percent that allows customers to provide a final product that is both nutritious and healthy to consumers. Our mission is to provide healthy fish, healthy food, healthy oceans.”F3 sees itself as more than a contest – it is a collaborative community of aquafeed manufacturers, fishmeal and fish oil alternative makers and others in the aquaculture value chain working toward a solution to eliminate the fishmeal and fish oil bottleneck that could impede the aquaculture industry’s growth.“I know this is just the beginning for Veramaris and others to address a major bottleneck in supply chain for aquafeeds support healthy farm-raised fish and healthy oceans in the future,” said Kevin Fitzsimmons, F3 Challenge chair and professor at the University of Arizona.“The network and connections made have been invaluable and more importantly the involvement of stakeholders along the value chain from farmers to retailers and NGOs, has been amazing,” said Kurmaly. “We work with all stakeholders along the value chain from farmers, feed millers, processors, certification bodies and retailers to create value and capture value in seafood. We help create the pull and we do this by working along the entire value chain. Supporting to create and capture value is what we do for with partners.“There are many courageous leaders amongst the audience who want to do the right thing for a sustainable aquaculture industry. The F3 has been the catalyst required.” Kurmaly concluded his on-stage remarks at GOAL by saying that the company’s sights are moving beyond salmonids: “We also would like to collaborate with shrimp farmers here in India and elsewhere to take you on this journey as well,” he said. “We want to connect, collaborate and we will definitely commit.”Source : Global Alliance Aquaculture ...
Perusahaan Norwegia Teken Perjanjian Kerja Sama Budidaya Ikan Terpadu di TEI
Teknologi

Perusahaan Norwegia Teken Perjanjian Kerja Sama Budidaya Ikan Terpadu di TEI

Di sela-sela perhelatan Trade Expo Indonesia (TEI) 2019, KBRI Oslo, Norwegia, Kementerian Luar Negeri dan Kementerian Perdagangan RI berhasil memfasilitasi penandatanganan perjanjian business-to-business (b-to-b) antara konsorsium perusahaan-perusahaan Indonesia dipimpin PT El Rose Brothers dengan perusahaan Sterner AS asal Norwegia. Acara penandatanganan dilakukan oleh Ferry Budiman selaku Direktur PT El Rose Brothers dan Gisle Larsen selaku Direktur Sterner AS dengan mengambil tempat di Nusantara Convention Hall, ICE BSD City, Tangerang, pada tanggal 16 Oktober 2019. Perjanjian ini merintis jalan bagi investasi yang cukup signifikan dalam mengembangkan bisnis budidaya perikanan onshore fish farming berbasis teknologi Recirculating Aquaculture System (RAS) di Indonesia. PT El Rose Brothers akan memulai pembangunan fasilitas RAS tersebut di Provinsi D.I. Yogyakarta pada tahun 2020 dengan rencana kapasitas produksi tahap I sebesar 2.500 ton per tahun produk ikan kakap putih (Barramundi). Proyek ini direncanakan akan mendatangkan investasi senilai USD 50 juta. Menurut rilis pers KBRI Oslo, Kamis (17/10/2019), penggunaan teknologi RAS asal Norwegia pada bisnis budidaya perikanan diharapkan dapat menghasilkan produk ikan yang berkualitas tinggi secara berkelanjutan dengan memanfaatkan keunggulan pengawasan kualitas yang dimiliki Sterner AS. PT El Rose Brothers berencana juga akan membangun fasilitas pembibitan (hatchery) yang akan sangat bermanfaat bagi pengoperasian fasilitas RAS tersebut serta meningkatkan kualitas produk perikanan Indonesia secara umum.Gisle Larsen menyatakan, "Kami sangat senang dapat bekerja sama dengan El Rose Brothers untuk memulai babak baru dalam produksi produk perikanan onshore di Indonesia. Proyek kemitraan ini dapat menjadi landasan untuk memadukan investasi asing dan teknologi RAS dan pengolahan air bersih milik Sterner AS di Indonesia". Sementara itu, Ferry Budiman menyatakan, "Melalui integrasi teknologi maju bertaraf dunia di bidang budidaya perikanan yang dimiliki Sterner, kami optimis akan menjadi yang terunggul dalam hal produksi produk perikanan yang berkualitas tinggi dan aman bagi konsumen. Kami memang bertujuan untuk menjadi produsen produk perikanan dengan fasilitas onshore (kawasan daratan) dalam kurun waktu lima tahun mendatang yang akan menyediakan produk untuk pasar domestik maupun global. Duta Besar RI untuk Kerajaan Norwegia dan Republik Islandia, Todung Mulya Lubis yang turut menyaksikan prosesi penandatanganan kerja sama tersebut menambahkan, "Semua pihak kiranya perlu memberikan dukungannya agar kerja sama ini dapat direalisasikan secara konkret dan tepat waktu sesuai perencanaan. Disamping itu, perlu dipastikan juga agar proyek tersebut dapat segera beroperasi dengan memenuhi seluruh ketentuan yang berlaku di Indonesia. Dengan demikian, proyek ini dapat mendukung peningkatan perekonomian nasional dan memberi kemaslahatan bagi peningkatan kesejahteraan masyarakat, khususnya di Provinsi DI Yogyakarta dan Indonesia pada umumnya". Sementara itu, Wakil Menteri Luar Negeri RI yang juga hadir pada prosesi penandatanganan menegaskan dukungan pemerintah bagi upaya peningkatan investasi luar negeri di Indonesia. Wamenlu menambahkan bahwa Indonesia siap meningkatkan hubungan ekonomi dengan negara-negara mitra, termasuk Norwegia. "Hanya melalui upaya bersama, kita dapat menciptakan hubungan ekonomi yang kuat", pungkasnya. Teknologi RAS merupakan komponen penting dalam produksi makanan yang rendah karbon dan berkelanjutan di masa mendatang. fasilitas berbasis teknologi RAS milik Sterner memungkinkan produksi berdasarkan quality assurance, traceability dan managed growth pada lingkungan yang zero waste dan low carbon.  Sumber : Detik.com ...
Feed and Faeces: The Challenges of RAS Production
Teknologi

Feed and Faeces: The Challenges of RAS Production

While speaking at Alltech’s Aqua InDepth conference this week, Bram Rohaan, production manager at Kingfish Zeeland, took delegates on a virtual tour of the company’s RAS production facility.The facility currently produces 520 tonnes of kingfish per year and recycles 99.6 percent of its water intake. Although Kingfish Zeeland’s innovative facility is on the cutting edge of aquaculture technology, there are – according to Rohaan – obstacles preventing it from reaching its full production potential.Bram Rohaan gave Aqua InDepth delegates a virtual tour of the Kingfish Zeeland RAS facilityShowing conference delegates a photo of broken and crumbling aquafeed, he explained, “this is what we have been experiencing for the past two years – we weren’t able to receive feed without breakage.”Since RAS requires extra filtration in order to keep the water clean and oxygenated, producers need to use feed pellets that are more resistant to breakage than typical aquafeed. This will improve water quality and prevent filters from become too saturated with feed particles, said Rohaan.Though feed quality has recently improved, he explained, addressing the knock-on issues caused by broken pellets was a daily challenge for the RAS facility.Newer problems are emerging for Kingfish Zeeland too. “Now, the new challenge is dealing with the faeces,” says Rohaan. “Kingfish faeces aren’t like salmon or trout faeces – they aren’t solid.” This problem presents similar filtration issues to aquafeed but will require more research into kingfish biology to resolve.Rohaan also spoke about how Kingfish Zeeland is aiming to double its production capacity to 1,000 tonnes, with longer-term ambitions to increase this to 3,000 tonnes, and is also in the process of developing a new RAS in the United States.When answering questions from delegates, Rohaan was unwilling to divulge details about the company’s production costs. However, he did say that labour costs are still an obstacle for the company and that scaling up production is also a challenge for their future growth. Rohaan’s talk was part of Alltech’s Aqua InDepth conference, which brought over 200 delegates from 42 countries to Eindhoven to learn about the latest breakthroughs in aquaculture and feed science.Source : The Fish Site ...
Sustainable Fisheries Partnership Unveils New Aquaculture Improvement Toolkit
Teknologi

Sustainable Fisheries Partnership Unveils New Aquaculture Improvement Toolkit

The Sustainable Fisheries Project (SFP) announced on 25 September that a new aquaculture improvement project (AIP) Toolkit has been created to foster improvements in the aquaculture industries. The toolkit, which is an online resource, provides a step-by-step guide on how to initiate an AIP, from the initial identification of the need for one to scoping what the project could be. An AIP is similar to a fisheries improvement project (FIP); a multi-stakeholder process between industry and other entities to reduce the environmental impacts and risks associated with aquaculture. “Compared to FIPs, the concept of an AIP is relatively new, less familiar, and far less established within the seafood industry,” Dave Martin, deputy division director of programs at SFP, said in a release. “However, they are an equally important mechanism for the supply chain to support industries along the journey toward sustainability.”The SFP has adapted the AIP toolkit from existing guidelines for FIPs –  created by the Conservation Alliance for Seafood Solutions – mirroring the style of current guidelines from SFP. The toolkit also suggests that the Food and Agriculture Organization’s Ecosystem Approach to Aquaculture should be taken into account, and that AIPs should operate on a “scale beyond the farm level and focus on improved management at the resource, watershed, or landscape level.”“We aren’t reinventing the wheel here. We’ve taken a model that is well-known to industry – the FIP model – and adapted it to the unique challenges of aquaculture,” SFP CEO Jim Cannon said. “Many of the steps in an AIP mirror the core attributes of a FIP: public supply chain commitments, published needs assessments, workplans with time-bound objectives, and regular public reporting of progress.” The entire toolkit is available online, as well as supplemental reports co-published by the SFP, Conservation International, and the University of California Santa Barbara’s Sustainable Fisheries Group. Source : Seafood Source  ...
Genome Editing: Potential to Improve Aquaculture Breeding, Production
Teknologi

Genome Editing: Potential to Improve Aquaculture Breeding, Production

Need for sustainable aquaculture production, current status of genome editingThe CRISPR/Cas9 genome editing technology has already been successfully applied to several aquacultured species, including Atlantic salmon and Pacific oysters. Photos by Darryl Jory.The role of aquaculture in food securityFood security is a major and increasing global challenge, associated with a rapidly growing demand for high-quality animal protein. Competition for land use will present a serious limitation to the scope for increases in terrestrial crop and animal production. Therefore, it is likely that aquaculture will have a growing role in meeting this rising food and nutrition demand. Fish production via aquaculture is now approximately equal to capture fishery production for the first time in history, will be the dominant source of seafood within a few decades, and is the fastest growing food production sector, predicted to grow by 31 percent over the next 10 years.Fortunately, development potential is huge, with only ~1 percent of suitable marine sites currently being used for aquaculture. Furthermore, aquaculture production is considered efficient in terms of feed conversion and protein retention compared with most terrestrial livestock, and seafood is the major source of long-chain polyunsaturated fatty acids, which are considered essential for human health. However, relative to many crop and livestock production systems, most aquaculture is at a formative stage and is typically a high-risk activity. Sustainability can be hindered by an initial lack of control of the reproduction cycles of species, and periodic collapses due to infectious diseases. Upscaling and improving the reliability of production will require disruptive innovation in engineering, health, nutrition and genetic improvement technologies, the latter being the focus of this review.Genetic improvement for sustainable aquaculture productionDomestication and genetic improvement of terrestrial livestock has occurred for several millennia, with organized breeding programs for most species in place for more than 50 years. The results have been striking; for example, selective breeding has led to a threefold increase in the efficiency of milk production in cows, with similar gains for other target traits. By contrast, relatively little aquaculture production is underpinned by modern selective breeding programs.Most farmed aquatic species are either still sourced from the wild or in the early stages of domestication, suggesting that there is substantial standing genetic variation for traits of economic importance. The reproductive biology of aquatic species can be amenable to the application of genetics and breeding technologies, enabling high selection intensity and, therefore, genetic gain. In part, this is due to the near-universal high fecundity of aquatic species, and the resulting large nuclear families, which can facilitate extensive collection of phenotypic records in close relatives (including full siblings) of selection candidates in breeding programs.The reproductive output from genetically improved broodstock together with ease of transport of eggs and juveniles, also means widespread dissemination of improved stocks can have a rapid impact on production. Furthermore, with the development of high-density SNP arrays [a SNP array is a microarray platform that provides the genotype of an individual for many thousands of SNPs (single base-pair differences in DNA sequence at a specific region of the genome) dispersed throughout the genome] and routine genotyping by sequencing genomic selection – the use of genome-wide SNPs to predict breeding values of selection candidates in a selective breeding program and to help inform which individuals to select for breeding – has become the state-of-the-art in several globally important aquaculture sectors, offering higher selection accuracies than selection based on phenotypic and pedigree records alone.However, genetic progress in selective breeding is limited by the heritability of the target traits, the generation interval of the species and the need to target multiple traits in the breeding goal. In addition, advanced breeding programs are typically closed systems, and are limited to the standing genetic variation in the broodstock (typically sourced from a limited sample of wild populations), and new variation that arises from de novo mutations. Genome-editing technologies – such as CRISPR/Cas9 (CRISPR stands for clustered regularly interspaced short palindromic repeats and Cas9 stands for CRISPR-associated protein 9 (CRISPR sequences together with the Cas9 enzyme can be used to make targeted changes to a genome) – offer new solutions and opportunities in each of these areas.Advances in genome-editing technologies: CRISPR/Cas9 as the game-changerIn contrast to transgenesis, which involves the transfer of a gene from one organism to another, genome editing allows specific, targeted and often minor changes to the genome of the species of interest. Initial progress using other technologies has been largely superseded by the advent of the repurposed CRISPR/Cas9 system. The CRISPR/Cas9 system was discovered in bacteria, and was engineered to enable easy, cheap and efficient targeted editing of the genome. The system enables imperfect or targeted repair to create alterations to the sequence of the genomic DNA.There are two primary repair mechanisms, each of which can be used to introduce different types of edit to the target genome. First, the two adjacent strands of DNA can be repaired through a technique called nonhomologous end-joining pathway (NHEJ), which is error-prone and induces insertion or deletions of a few nucleotides. Second, if a repair template is present, another technology called homology-directed repair (HDR) can be used to insert desired mutations (from a single nucleotide swap to a whole chromosomal region insertion).Over the past few years, technical developments have made genome editing more efficient and raised new possibilities for biological discovery. There have also been numerous innovations that have enabled improved precision of editing, with lower off-target rates, and broadening of the range of target sites accessible via alternative Cas9 proteins. Novel extensions of the CRISPR/Cas9 editing system now allow researchers to better achieve gene activation or inhibition, and some techniques have the potential to target almost two-thirds of human SNPs.Current status of genome editing in aquaculture speciesGenome editing using CRISPR/Cas9 was recently successfully applied in vivo and/or in cell lines of several major aquaculture species like Atlantic salmon and rainbow trout); carps (Rohu, grass, and common carp); channel and southern catfish), as well as Pacific oyster, Nile tilapia and gilthead sea bream (Table 1). One major group of aquatic species where successful CRISPR/Cas9 editing has not yet been reported is shrimp (Penaeus sp.), which may be partly due to practical limitations, as discussed briefly below.Most studies have a proof-of-principle focus, have typically followed CRISPR/Cas9 protocols developed in model organisms – such as zebrafish –and have often targeted genes with a clearly observable phenotype to test editing success (e.g., pigmentation). The standard methodology to induce in vivo mutations in aquaculture species is injection of the CRISPR/Cas9 complex into newly fertilized eggs as close as possible to the one-cell stage of development. Typically, mRNA encoding the Cas9 protein is injected together with the guide (g)RNA, leading to a high efficiency of editing that has been demonstrated in various species to date ; using the Cas9 protein in place of mRNA is also effective.Target production traits for genome-editing studies in aquaculture species to date have included sterility, growth, and disease resistance. Creating sterile animals for aquaculture is desirable to prevent introgression with wild stock and to avoid the negative production consequences of early maturation. In this context, CRISPR/Cas9 has been used to induce sterility in Atlantic salmon and catfish. For growth-associated traits, several groups have edited the myostatin gene (famous for its role in double-muscled cattle, such as the Belgian Blue), resulting in larger fish. To date, this has been performed in channel catfish and common carp. Immunity and disease resistance have already been investigated using genome editing in rohu carp and grass carp, respectively, and it is expected that this area of research will flourish as a route to improving and understanding disease resistance as a key target trait for aquaculture.Genome editing can also be applied to develop models for studying fundamental immunology, such as the targeted disruption of the TLR22 gene in carp. Such models can improve our fundamental understanding of host response to infection in fish and may lead to more effective treatment protocols. Along similar lines, it is plausible to use genome-editing technology to generate improved cell lines for fish species, for example by enabling more efficient production of viruses for future vaccine development by knocking out key components of the interferon pathway.Genome editing to induce sterility and prevent wild introgression in Atlantic salmon: A case studyMost Atlantic salmon are farmed in open sea-cages, a production method that faces sustainability challenges, such as disease transmission from wild to farmed fish and vice versa, as well as escaped farmed fish impacting wild populations. A possible solution to these problems is the creation and use of sterile salmon in production. Currently, the only method available to sterilize commercial-scale numbers of salmon is triploidization (production of animals with three copies of every chromosome instead of the normal two). However, triploid (infertile) salmon are generally more sensitive to suboptimal rearing environments, which can make them prone to deformities and less tolerant to rising seawater temperatures.There are two significant additional benefits of using sterile fish. First, early maturation is prevented, which avoids the associated negative phenotypes, such as reduced growth, lower flesh quality and higher susceptibility to disease. Second, sterility in production fish may safeguard Intellectual Property for the breeding companies. The gene encoding dead end (dnd) has been targeted to induce sterility in salmon, preventing the formation of germ cells. This was done using targeted mutagenesis (a process that changes the genetic information of an organism, resulting in a mutation) against dnd with CRISPR/Cas9, thereby creating a gene-edited sterile fish. Germ cell-free salmon will be 100 percent sterile and do not enter maturity.Practical application of such sterile fish in breeding programs will require developments in genome editing, including knock-in, which could lead to the production of an inducible on-off system for sterility. Such mechanisms have been developed for the model fish species medaka and zebrafish. Use of this sterility technology may foster the future development of genome editing for other traits, such as disease resistance, with negligible risk of escapees interbreeding and passing edited alleles (variant forms of a given gene) on to wild stocks.Some practical reasons why genome editing has such potential for research and applications in aquaculture species are the ease of access to many thousands of externally fertilized embryos, and the large size of those embryos facilitating microinjection by hand. The ability to use large nuclear families enables a degree of control of background genetic effects, with ample sample sizes achievable for downstream comparisons of successfully edited individuals with their unedited full-sibling counterparts. The ability to perform extensive “phenotyping” is often also feasible, for example using well-developed disease challenge models to assess resistance to many viral and bacterial pathogens during early-life stages. Finally, should favorable alleles for a target trait (e.g., disease resistance) be created or discovered, then there is potential for widespread dissemination of the improved germplasm for rapid impact via the aforementioned selective breeding programs.In parallel, high-quality, well-annotated reference genomes are available for most of the key species. A high-quality species-specific reference genome is essential for the effective design of target guide RNAs (gRNA; one of two components of engineered CRISPR systems) with high specificity and minimum change of off-target editing, in particular given the relatively recent whole-genome duplication events that are features of several finfish lineages, including salmonids.Integration of genome-editing technologies into aquaculture breeding and dissemination programsIf the public and regulatory landscape permits, genome-editing technologies are likely to be used in commercial aquaculture breeding in the coming years. However, for widespread adoption, maximal benefit, and minimal risk, it is necessary that these technologies are seamlessly integrated with well-managed selective-breeding programs. Achieving this will help ensure careful management of genetic diversity and avoidance of potential inbreeding depression.In practice, the mass delivery of CRISPR/Cas9 to edit production or multiplier animals is unlikely to be feasible, and editing entire broodstock populations to carry the desirable alleles in the germplasm (living genetic resources like seeds or tissues that are maintained for the purpose of animal and plant breeding, preservation, and other research uses) is more practical. As such, inducible editing targets may be required for impacts on traits related to sterility and maturation.In addition, technology developments are required to effectively integrate multiple edits simultaneously into broodstock animals to target multiple traits, or multiple causative alleles for the same trait. Thorough testing of edited animals is required to assess and exclude possibilities of unintended and potential detrimental pleiotropic effects of edits before any application in production.However, once these issues have been addressed, widespread and rapid positive impacts could be achieved, because the high fecundity of most aquaculture species may enable dissemination to production systems without the need for pyramid breeding schemes typical of terrestrial livestock species.Applications of genome editing for aquaculture research and productionInfectious diseases are one of the primary threats to sustainable aquaculture, with an estimated 40 percent of the total potential production lost per annum. Due to the formative stage of domestication of many aquaculture species, new selection and disease pressures in the farm environment may increase the possibility that standing genetic variation in farmed populations includes loci of major effect, which may represent potential low-hanging fruit for genome editing to increase the frequency of the favorable allele.A well-known example of a major quantitative trait locus [QTL; a locus (section of DNA) which correlates with variation of a quantitative trait in the phenotype of a population of organisms]; often an early step in identifying and sequencing the actual genes that cause the trait variation.) affecting disease resistance is the case of infectious pancreatic necrosis virus (IPNV) in Atlantic salmon, in which a major QTL explains the majority of the genetic variation. Marker-assisted selection, based on the targeted use of molecular genetic markers, has been successfully applied to markedly reduce the impact of this disease.However, despite several QTL studies in aquaculture species and ample evidence for the heritability of disease resistance traits, only a handful of large-effect QTL have been detected, and most disease resistance and other production-relevant traits are underpinned by a polygenic (multiple genes) genetic architecture. As such, genetic improvement of disease resistance relies on family-based selective breeding programs, augmented by the use of genomic selection, for which disease resistance has been a major focus. The substantial opportunity for genetic improvement of disease resistance and other performance traits in aquaculture species, combined with initial success of in vivo genome-editing trials, opens exciting new avenues to improve aquaculture production and sustainability. There are three main categories by which genome-editing technology could be applied to make step changes in genetic improvement, and each requires different approaches to the underpinning research leading to discovery of functional alleles: (i) detecting, promoting, removing, or fixing targeted functional alleles at single or multiple QTL(s) segregating within current broodstock populations of a selective breeding program; (ii) targeted introgression-by-editing of favorable variants from different populations, strains, or species to introduce or improve novel traits in a population; and (iii) creating and utilizing de novo favorable alleles that are not known to exist elsewhere. We discuss each of these avenues, and a unique opportunity to harness a combination of in vivo and in vitro approaches to understand and improve disease resistance in aquaculture species is presented.Source : Global Aquaculture Alliance ...
Reeldata Enters Prestigious Accelerator Program
Teknologi

Reeldata Enters Prestigious Accelerator Program

Halifax-based ReelData, whose software uses artificial intelligence to analyze video for the aquaculture industry, has entered the Techstars Montreal AI Accelerator. - ContributedHalifax-based ReelData, whose software uses artificial intelligence to analyze video for the aquaculture industry, has entered the Techstars Montreal AI Accelerator.Founders Matt Zimola and Hossein Salimian joined the latest cohort of the accelerator last week, immediately beginning one-on-one meetings with the range of mentors brought in for the program.ReelData uses artificial intelligence to collect and analyze data for fish farms. Its software can analyze video from fish pens and produce meaningful data on the weight distribution of fish stock and the progress of certain diseases.As a promising AI (artificial intelligence) company, it was able to enter the Techstars program in Montreal, which focuses on AI companies. Affiliated with Real Ventures, it is the third Techstars accelerator in Canada, and one of a network of Techstars programs around the world.“Techstars itself is like this mentor-focused accelerator, and they’re one of the best in the world at it,” said Zimola in a phone interview from Montreal.Zimola and Salimian were graduate computer science students at Dalhousie University who wanted to start an AI venture, and their professor Thomas Trappenburg suggested they consider an ocean venture. Soon they settled on aquaculture as a target market.Aquaculture companies have a problem in assessing the weight distribution among the fish in their pens, and all the pens are equipped with underwater video cameras. These operations need to know that a certain percentage of their fish meet a minimum weight requirement, and until now the only way to do it was to get the fish out of the pen and weigh them.Zimola and Salimian have developed what they call the “biomass” component of their technology, which applies artificial intelligence to produce data on the weight distribution of a fish stock just by analyzing video from the pen.Working out of the Start-up Yard in Dartmouth and Volta in Halifax, ReelData now has paid pilot projects in Canada and the U.S., including with a major company in a central state in the U.S. that operates an on-land fish farm — a growing segment of the aquaculture market. The founders are also in discussions with operators in Mexico, Denmark and Iceland.Now they’re in Montreal and enrolled in one of the country’s leading accelerators. Zimola said the first few weeks are spent with as many as eight meetings a day with mentors, during which they discuss problems specific to the company.At the end of a few weeks, Zimola and Salimian will request a single mentor to work with them during the remainder of the program.One problem they’ve encountered so far is just making the AI experts they’re meeting understand how big the aquaculture industry is and the opportunity it represents. The total value of the aquaculture industry is expected to reach $242 billion by 2022, according to Allied Market Research.ReelData now has three part-time staff, as well as the co-founders, and has an opening for a full-time developer. To finance the business, it received $25,000 from Innovacorp’s Sprint competition, won a $25,000 equity investment from the Volta Cohort and is receiving a US$120,000 investment from Techstars. Zimola said the company is planning to raise a round of funding in the spring.He also said that once it emerges from Techstars, the priority will be to sign major customers on to full subscriptions to the ReelData technology. “The next year or so, we will sign on international big companies on land and we want to sign on ocean customers as well,” he said.Source : Compass ...
Algae Detection System Aims to Help Aquaculture Bloom
Teknologi

Algae Detection System Aims to Help Aquaculture Bloom

The group – comprising of marine technology provider OTAQ, the Iain Fraser Cytometry Centre (IFCC) at the University of Aberdeen, the Scottish Aquaculture Innovation Centre (SAIC), and CENSIS (the Innovation Centre for sensor and imaging systems and Internet of Things technologies) – is creating a low-cost sensor system that can automatically sample, identify, and count specific microscopic organisms using imaging analysis. Algae and plankton build-up is a major issue in aquaculture – some types of the organisms are toxic to salmon and others, in large quantities, can cause fatal gill damage. Algal blooms, the rapid growth of algae, can occur when there are significant changes to temperature, light, or nutrient conditions. In 2019, a particularly severe case in Norway led to the loss of a substantial number of fish.Current methods used for monitoring plankton and algae numbers are laborious, relying on readings manually taken once or twice per day. The results are also open to individual interpretation and error. Even some of the more accurate approaches rely on expensive and high-maintenance equipment that only provide a snapshot of algal levels. Using microscope camera technology and a unique water sampling tool, OTAQ’s new system will use artificial intelligence (AI) deep learning to process images and provide a near real-time reading for fish farmers. The producers can then take preventative measures, such as the activation of a ‘bubble curtain’ or barrier to protect a stretch of water or stop feeding salmon when necessary.The system is expected to enhance fish wellbeing and better safeguard stocks, improve the use of feed, as well as helping to make the entire water quality monitoring process more efficient and cost effective for producers. OTAQ said several companies have already expressed an interest in the new technology. Chris Hyde, chief commercial officer at OTAQ, said: “Plankton and algae are a significant problem for the aquaculture industry – substantial stocks of salmon have been lost in the past few years, from Norway to Chile, because of the issue. Early detection of harmful species of plankton and algae has been a sticking point and we’re looking to overcome that problem with our new sensing technology, which will fundamentally automate the process and provide accurate information about plankton numbers 24 hours a day.“The development of the sensors is the first step towards a more comprehensive early-warning system. This is a strategically important product for us, which will offer salmon farms a better view of what’s happening on their sites and extra data with which they can make decisions – many businesses have already said they need it. The involvement of two of Scotland’s innovation centres and the University of Aberdeen has accelerated the development process significantly and provided us with the scientific grounding to produce accurate, actionable data.”Dr Raif Yuecel, head of the Iain Fraser Cytometry Centre at the University of Aberdeen, added: “Flow cytometry is a well-established and routinely used quantitative technology to study phytoplankton and algae. The Iain Fraser Cytometry Centre (IFCC) is a state-of-the-art cytometry facility and therefore is the ideal partner to collaborate with OTAQ on this exciting project that will advance an essential aspect of marine science. Experts at the centre will work to validate OTAQ’s AI system for accurate quantitative imaging data and timely assessment of pathogenic marine species using in-house cutting-edge cytometry technology. We are proud to contribute to such an innovative system and set the initial milestone for monitoring live pathogenic planktons in fish farms.” Caroline Griffin, aquaculture innovation manager at SAIC, said: “This technology could prove a real breakthrough for aquaculture in all salmon-producing countries, enhancing fish wellbeing and health by tackling one of the biggest threats to stocks. In Scotland, it could underpin the Scottish Government’s Farmed Fish Health Framework over the next decade. "It builds on many of our previous projects around improving fish health and wellbeing, along with reducing the industry’s environmental impact by adopting new technologies from other sectors and applying them to aquaculture.”Source : The Fish Site ...
Hasil Riset Perikanan Hasilkan Teknologi Siap Pakai
Teknologi

Hasil Riset Perikanan Hasilkan Teknologi Siap Pakai

Hasil riset kelautan dan perikanan diwujudkan dalam bentuk produk teknologi yang siap dipakai oleh masyarakat. Hal itu tergambar pada gelaran pameran inovasi dan kreativitas kota Pekalongan 2019, Kepala Badan Riset dan Sumber Daya Manusia Kelautan dan Perikanan (BRSDM) Kementerian Kelautan dan Perikanan (KKP) Sjarief Widjaja, secara simbolis menyerahkan alat transportasi ikan segar untuk roda-2 (Altis-2) kepada Walikota Pekalongan, Saelany Machfudz. Altis-2 selanjutnya diteruskan kepada pelaku usaha perikanan kota Pekalongan. Pameran Inovasi dan Kreativitas Kota Pekalongan 2019 digelar sebagai rangkaian Hari Kebangkitan Teknologi Nasional (Harteknas) ke-24. Bertempat di Gedung Olah Raga (GOR) Jetayu kota Pekalongan, acara ini digelar selama empat hari yaitu pada 5 - 8 September 2019. Diterangkan Sjarief, Altis-2 merupakan salah satu inovasi riset dari BRSDMKP yang telah mendapatkan nomor pendaftaran paten S00201402661 pada tahun 2014. Kendaraan ini termasuk dalam 108 Inovasi Indonesia dan Rekomendasi Teknologi KKP tahun 2016, serta menjadi runner up pada Kompetisi IPLAN Challenges 2018. Dia menuturkan, alat tersebut dapat digunakan untuk ikan yang telah dingin sebelum dijajakan oleh pedagang ikan keliling (telah di es atau disimpan beku). Alat ini mampu mempertahankan suhu ikan 3–4°C selama kegiatan, dengan waktu keliling hingga 6 jam, serta mampu menampung ikan sebanyak 60 kg. "Mekanisme alat ini sangat sederhana, ikan yang dikulak oleh pengecer pada sore hari disimpan di dalam di freezer, pagi nya dimasukkan ke AlTIS-2 agar ikannya tetap dingin, segar, mutu terjaga. Alat ini tidak menggunakan es sama sekali, dapat mengurangi modal usaha sekaligus meningkatkan pendapatan pedagang ikan tersebut dan tidak menggunakan sterofom yang dianggap tidak ramah lingkungan," terang Sjarief. Ditegaskannya, hasil riset, hasil penelitian kita, harus dapat digunakan masyarakat secara langsung. Pekalongan merupakan kota pertama di Indonesia yang menerima Altis-2 pada 2019 ini. Loka Riset Mekanisasi Pengolahan Hasil Perikanan (LRMPHP), turut menampilkan hasil riset dan inovasinya dalam dalam Pameran Inovasi dan Kreativitas Kota Pekalongan 2019. LRMPHP menyajikan hasil inovasi riset berupa prototype alat pengujian kesegaran ikan berbasis non-destruktif. Alat ini mampu mengidentifikasi dan menilai kesegaran ikan dengan cepat berbasis 2 (dua) parameter yaitu citra mata dan gas. Proses pengujian kesegaran ikan non-destruktif berdasarkan citra mata dan deret sensor gas sendiri telah mendapatkan nomor pendaftaran paten P00201704950 pada 2017. "Di samping itu, kami juga memiliki aplikasi Laut Nusantara. Aplikasi berbasis android ini membantu nelayan untuk mendapatkan tangkapan yang lebih banyak. Jadi nelayan sekarang bukan lagi mencari ikan tapi menangkap ikan. Ini merupakan langkah BRSDM dalam menciptakan nelayan milenial. Dengan kultur dan kearifan Indonesia, namun menggunakan teknologi terbarukan yang dapat diakses di manapun dan kapanpun," jelasnya. Sjarief pun mengapresiasi Walikota Pekalongan yang konsisten mengadakan kegiatan pameran inovasi dan kreativitas setiap tahunnya guna menunjang pengembangan Iptek berbasis kearifan lokal. Walikota Pekalongan menanggapi, bahwa Pemkot memang tengah memperkuat karakter kota Pekalongan sebagai kota kreatif dunia dengan tagline kreatif, inovatif, sejahtera, dan mandiri. "Kami mengapresiasi hasil riset dan inovasi yang dihasilkan BRSDM yang tentunya bermanfaat untuk masyarakat," tutur Saelany. Artikel Asli : Trobos Aqua ...
Aquatec Ekspor 160 Petak Keramba Apung ke Maladewa
Teknologi

Aquatec Ekspor 160 Petak Keramba Apung ke Maladewa

Pada hari Selasa, 10 September 2019, PT. Gani Arta Dwitunggal (AquaTec) mengekspor untuk kedua kalinya Keramba Jaring Apung (KJA) HDPE ukuran 3m x 3m 8 petak per unit sebanyak 20 unit, dengan total jumlah keramba sebanyak 160 petak ke Ministry of Fisheries and Agriculture (Kementerian Perikanan dan Pertanian) Negara Republik Maladewa (Maldives), yang dikemas dalam 5 kontainer 40’HC. Acara pelepasan ekspor ke Maldives diresmikan oleh Kepala Dinas Kelautan dan Perikanan Jawa Barat Bapak Jafar Ismail, dihadiri langsung oleh Direktur Utama PT. Gani Arta Dwitunggal Bapak Budiprawira Sunadim, Mantan Dirjen Perikanan tangkap KKP Dr. Ir. Dedi H. Sutisna, MS., Kepala Dinas Kabupaten Bandung Barat Bapak Chandra, perwakilan UNPAD Ir. Rita Rostika, perwakilan dari MAI Bapak Muhamad Husen, perwakilan dari pemerintah Provinsi Jawa Barat, perwakilan dari IPB, beserta undangan-undangan lainnya.  Maldives, yang selama ini terkenal dengan sektor pariwisatanya yang telah mendunia, ternyata memiliki minat besar untuk mengembangkan sektor akuakultur. Ekspor kali ini merupakan kelanjutan dari ekspor keramba jaring apung AquaTec sebelumnya pada tahun 2018, dan merupakan perwujudan dari program pemerintah Maldives untuk memajukan sektor perikanan budidaya. Didukung dengan letak geografis Negara tersebut yang berbentuk kepulauan, sebagian dari pulau-pulau yang ada di Maldives akan dialokasikan menjadi sentra-sentra perikanan budidaya dalam proyek Sustainable Fisheries Resources Development Project Male yang didanai oleh World Bank (Bank Dunia). Keramba jaring apung yang dibeli dari Indonesia ini akan dibagikan kepada pembudidaya-pembudidaya lokal Maldives untuk meningkatkan produksi ikan kerapu, yang nantinya sebagian hasil budidaya akan dikonsumsi secara domestik dan sebagian lainnya diekspor ke negara China.AquaTec bangga bahwa produknya bisa kembali dipercaya oleh Kementrian Perikanan dan Pertanian di Maldives yang didanai oleh World Bank untuk mengembangkan sektor perikanan Maldives di tahun 2019. Untuk tahun 2020, Maldives berencana akan mengimpor kembali keramba jaring apung dari AquaTec dalam jumlah yang lebih besar.Kepala Dinas Perikanan dan Kelautan Jawa Barat, Jafar Ismail mengatakan, “Teknologi KJA dari PT. Gani Arta Dwitunggal yang sudah dipakai oleh sejumlah negara membuktikan produknya sudah bertaraf internasional. Dalam pengembangan industri perikanan budidaya di Jawa Barat, kami juga akan mengembangkan KJA merek AquaTec. Untuk uji coba, kami akan membeli sejumlah unit untuk diterapkan di Pantai Selatan di Sukabumi dan di Pantura Subang. Ini untuk percontohan sehingga masyarakat bisa meniru, sekaligus dapat meningkatkan sektor pariwisata.” (dikutip dari Kompas, Rabu 11 September 2019) Di dalam negeri, Aquatec telah bekerjasama dengan Kementerian Kelautan dan Perikanan RI dalam mengembangkan sektor perikanan budidaya. Dengan sebanyak 15.750 petak keramba jaring apung HDPE (High Density Polyethylene) terpasang di wilayah Indonesia, produksi kerapu Indonesia mencapai 5.600 ton pada tahun 2015. Selain Maldives, Aquatec juga sudah mengekspor produk-produknya ke berbagai negara seperti Singapura, Malaysia, Filipina, Brunei Darussalam, Taiwan, China, dan Ghana. Bahan HDPE dipilih sebagai material keramba dikarenakan oleh karakteristiknya yang ramah lingkungan dan tahan lama, sehingga keramba mampu menghadapi ombak setinggi 2 meter untuk KJA segi empat, dan mampu menghadapi ombak setinggi 4 meter untuk KJA bundar offshore. Mari majukan sektor perikanan budidaya bersama Aquatec.Sumber : Aquatec  ...
Rakit Kincir Sendiri, Tekan Biaya Produksi
Teknologi

Rakit Kincir Sendiri, Tekan Biaya Produksi

Jika satu petakan tambak saja 24 kincir, satu lokasi misalnya 100 kincir, cost yang bisa ditekan mencapai Rp 100 juta. Kincir merupakan salah satu kebutuhan dalam proses budidaya udang. Peranannya sangatlah penting untuk menyuplai Disolve Oxygen (DO) atau oksigen terlarut air di tambak. Hal ini diakui oleh Haji Buntara selaku petambak udang vannamei Banten. Ia mengatakan pentingnya penggunaan kincir dalam usaha budidaya sehingga udang dapat tumbuh secara optimal.“Jantungnya dalam budidaya udang vannamei adalah kincir, dengan peranan utamanya sebagai penyuplai oksigen ke air. Selain itu peran dari kincir juga untuk membuat arus pada tambak sehingga membersihkan area permukaan dan dasar air tambak. Dengan demikian menciptakan kestabilan arus yang baik untuk pertumbuhan dan kesehatan udang,” ucap Haji Buntara pada TROBOS Aqua saat ditemui di lokasi usahanya baru – baru ini. Dalam aplikasinya, kincir yang digunakan membutuhkan cukup banyak biaya untuk perawatan atau pembelian baru. Maka perlu disiasati dalam perawatannya, antara lain terang Buntara, dengan merakit sendiri kincir unutk menekan biaya dan juga memudahkan dalam perawatan nantinya. Produksi Lokal Tekan BiayaJika diperhitungan dari segi biaya, tutur Buntara, satu unit yang siap pakai rata-rata harganya Rp 6 juta. Namun siapa sangka beberapa parts bisa dibuat dan dirakit sendiri. Gunanya menekan biaya pembelian kincir dan juga maintenance.  Dengan merakit beberapa parts produksi lokal, bisa menekan biaya sebanyak Rp 1 – 1,1 juta per unit atau 20 - 30 % dari harga pada umumnya. Hal ini sudah cukup lumayan menekan biaya perbaikan apabila rusak atau harus membeli baru. “Jika satu petakan tambak saja 24 kincir, satu lokasi misalnya 100 kincir, ada biaya selisih Rp 1 juta. Berarti ada cost yang bisa ditekan mencapai Rp 100 juta,” ungkap Haji Buntara.Pasalnya, ia melanjutkan, penggunaan beberapa parts yang bisa dibuat atau dibeli di dalam negeri sudah pasti menang dari segi biaya. Karena pertama, spare part  yang diproduksi dalam negeri tidak terkena bea masuk, karena pada umumnya kincir yang dengan merk dagang ternama didatangkan dari luar negeri. Kedua, biaya transportasi atau pengiriman sudah pasti lebih rendah dibandingan dengan kincir pada umumnya. Sehingga, seharusnya Indonesia bisa memproduksi kincir sendiri. “Tidak semua parts bisa didapatkan di dalam negeri, karena masih ada beberapa parts yang harus didatangkan dari luar negeri. Namun dengan demikian saja bisa menekan biaya pembuatan kincir,” terang Haji Buntara yang juga tergabung dalam Shirmp Club Indonesia (SCI).  Contohnya, dalam pemilihan as kincir perlu memperhatikan bahannya. Ia menuturkan, sebaiknya menggunakan bahan yang terbuat dari stainless steel sehingga anti karat dan lebih tahan lama. As stainless steel yang anti karat dapat diperoleh di toko material, sehingga bisa menekan biaya. Disamping as kincir, padle wheel yang baik serta pelampung juga harus diperhatikan kualitasnya karena akan mempengaruhi ampernya.  “Jika industri lokal kami percayakan untuk merakit dan membuat kincir, sebaiknya pertahankan kualitas atau bahkan tingkatkan kualitasnya,” terang Haji Buntara. Imbuhnya, jangan sampai jika para petambak mulai beralih dengan produk lokal, namun sebagai produsen nantinya memproduksi seenaknya, sehingga nantinya hanya akan membuat biaya maintenance atau perawatan bengkak. Sumber : Trobos Aqua ...
Jukung HDPE Anti Tenggelam, Sarana Transportasi Budidaya Laut Zaman Now
Teknologi

Jukung HDPE Anti Tenggelam, Sarana Transportasi Budidaya Laut Zaman Now

Pada hari Sabtu 4 Mei 2019, sebuah perahu jukung berwarna biru merapat di Bangsal, Lombok. Dari perahu jukung tersebut turunlah Budiprawira, Direktur PT. Gani Arta Dwitunggal, dan Ikhwan Arief, pengurus Wisata Bangsring Underwater. Di pantai telah menunggu wartawan, Dinas Kelautan Perikanan Lombok, Dinas Pariwisata Lombok, dan nelayan-nelayan yang penuh rasa ingin tahu.Kedatangan perahu jukung ini di Lombok merupakan event yang unik, di mana ini merupakan kedua kalinya (yang pertama pada bulan April 2016) perahu jukung sukses dipakai menyeberangi selat Bali dan Selat Lombok. Penunggang jukung yakni tidak lain adalah produsen dari perahu jukung ini sendiri, yaitu Budiprawira, ditemani kawan lamanya Ikhwan Arief. Perahu jukung berangkat dari Pantai Bangsring, Banyuwangi tanggal 3 Mei untuk tujuan pembuktian ketahanan perahu jukung berbahan HDPE, yang terbukti sukses menyeberangi kedua selat yang dikenal memiliki arus cukup kencang.Jukung HDPE Kurangi Penebangan PohonSebelumnya, perlu dijelaskan dulu mengenai sejarah perahu jukung. Perahu jukung merupakan sarana transportasi air yang paling umum digunakan oleh nelayan Indonesia, di mana pada tahun 2010 tercatat bahwa setidaknya terdapat 350.000 buah perahu jukung tradisional berbahan kayu yang operasional di perairan nusantara. Dengan begitu banyaknya perahu jukung kayu yang operasional, faktor ramah lingkungan, kapasitas, dan keamanan perlu diperhatikan karena berhubungan langsung dengan produksi ikan nasional dan keselamatan nyawa dari nelayan.Salah satu kendala dari perahu jukung tradisional berbahan kayu adalah bahannya yang terbuat dari kayu. Batang pohon besar yang utuh diceruk menjadi lambung dan dipasangi cadik pada sisi kiri dan kanannya menjadi sebuah perahu jukung kayu. Hal ini berdampak buruk bagi kelestarian hutan di Indonesia karena rata-rata perahu jukung kayu hanya mampu bertahan untuk 1-2 tahun, sedangkan pohon yang digunakan untuk membuatnya memerlukan waktu 20 hingga 40 tahun untuk tumbuh. Tidak hanya itu, perahu jukung kayu beresiko tenggelam pada saat nelayan melaut. Tidak jarang nelayan Indonesia di pesisir dan pulau-pulau kecil yang hilang setelah melaut, yang jumlahnya bisa mencapai ratusan orang dalam setahun.Ketahanan bahan kayu yang mudah lapuk ini menjadi perhatian utama Budiprawira dalam mendesain perahu jukung. Setelah mempertimbangkan bahan-bahan lainnya seperti fiber, didapat bahwa High Density Polyethylene atau disebut juga HDPE memiliki ketahanan yang paling baik untuk sarana transportasi air.Ketahanan Jukung yang Sudah TerujiHDPE memiliki ketahanan terhadap benturan yang jauh lebih tinggi dibandingkan dengan kayu dan fiber, dan juga tahan korosi maupun lapuk dengan umur pakai 25 tahun. Oleh karena itulah diciptakan perahu jukung HDPE anti tenggelam dengan Merk Aquatec. Selain menggunakan bahan HDPE, perahu jukung yang didesain langsung oleh Budiprawira memiliki fitur anti tenggelam. Hal ini dimungkinkan karena lambung jukung HDPE terbuat dari pipa pelampung raksasa dengan diameter 63 cm dan panjang 9,8 m, dengan 3 buah sekat di dalamnya.Pipa pelampung memiliki ketebalan 14 mm, dengan bagian dasar yang sering bergesekan dengan pasir memiliki ketebalan 28 mm, sehingga tahan terhadap benturan kecepatan sedang. Sistem pipa pelampung membuat daya apung dari perahu jukung HDPE berada di dalam pipa pelampung dan tidak bergantung pada ruang penumpang di atasnya, sehingga perahu jukung HDPE tidak dapat tenggelam sekalipun dalam cuaca buruk ataupun terbalik. Sekat dalam pipa pelampung memastikan perahu jukung HDPE tetap aman sekalipun apabila pelampung mengalami kerusakan. Perahu jukung HDPE anti tenggelam memiliki daya apung bersih 1.800 kg.Perahu jukung HDPE anti tenggelam dilengkapi dengan 2 buah cadik pelampung berdiameter 22,5 cm. Cadik membuat perahu jukung HDPE memiliki lebar 5,5 m, sehingga sangat stabil dalam melaut. Berbekal pada teknologi tersebut, Budiprawira percaya diri untuk menguji sendiri ketahanannya. Perahu jukung HDPE kemudian dilengkapi dengan outboard engine 40pk x 2, remote steer, remote gas, remote maju-mundur, remote naik-turun mesin, serta GPS dan kompas. Perjalanan dari Bangsring Banyuwangi menuju Bangsal Lombok ditempuh hanya dalam waktu 7,5 jam saja: 4,5 jam perjalanan dari Bangsring Banyuwangi menuju Tulamben Bali untuk isi bensin, langsung dilanjut 3 jam perjalanan dari Tulamben Bali menuju Bangsal Lombok. Arus air laut mengalir dari timur ke barat sehingga selama perjalanan, jukung HDPE bergerak melawan arus.Selama perjalanan tersebut pula, Budiprawira bersama Ikhwan Arief menghadapi ganasnya ombak besar yang mengakibatkan mesin mati satu. Untungnya dengan ketangguhan jukung HDPE, kendala-kendala tersebut dapat terlewati. Keberhasilan ini merupakan keberhasilan kedua sejak April 2016 (yang diuji oleh Budiprawira, Ikhwan Arief, beserta Andi Yuslim Patawari), di mana perahu jukung HDPE anti tenggelam telah memiliki banyak peningkatan sehingga memiliki kapasitas lebih besar dan lebih tangguh mengarungi lautan. Budiprawira yakin perahu jukung HDPE buatannya akan memampukan nelayan untuk melaut hingga 4 mil, jauh melebihi kapasitas perahu kayu tradisional sehingga pantas disebut sebagai sarana transportasi nelayan zaman now.Sumber : Info Akuakultur ...
The Inside Story: CP Foods Move to Total Shrimp RAS
Teknologi

The Inside Story: CP Foods Move to Total Shrimp RAS

The benefits of RAS aquaculture in terms of efficiency and sustainability have prompted the Thai food giant’s decision to move all of its shrimp production indoors – and it’s doing so quicker than expected.Nine months after announcing that it was going to move all its shrimp farms indoors, Charoen Pokphand Foods (CP Foods) says it has already achieved this for 30 percent of its operations. In a September 2018 statement, the Bangkok-based company’s executive vice president for aquaculture business, Premsak Wanuchsoontorn, said that all of the company’s farms would be indoors within five years. The move followed the successful building of prototype farms, which showed better yield, colour, size, disease control and quality.Nine months on, and progress is already underway, with 30 percent of total production in Thailand – up from 15-20 percent at the time Wanuchsoontorn made the pledge – already moved indoors. And work is now underway to build further RAS operations to complete the roll-out.According to Wanuchsoontorn, the difference in production capacity is a significant factor in the decision. In a well-managed outdoor system, the yield is between 20 and 30 tonnes per hectare, per crop. This figure is more than doubled in a high-production RAS facility, where every aspect of production is controlled, leading to typical yields of between 60 and 70 tonnes per hectare, per crop.“In Thailand we produce shrimp in a variety of sizes, up to 50g per piece depending on customer requirements. We find that they feed better and achieve higher growth rates in an RAS system than outside in ponds, which can be affected by seasonal weather conditions and temperature,” he said.“Optimum conditions can be provided 24 hours per day in RAS systems, with temperature, dissolved oxygen, water quality and feed tightly controlled, and this is reflected in the ability of the shrimp to maintain a steady growth all year round, with no seasonal variability,” Wanuchsoontorn told The Fish Site.His words were echoed by CP Foods’ executive vice president, Robins McIntosh, at the World Aquaculture Society conference in New Orleans earlier this year, who also spoke about the thorny issue of disease.“Indoor shrimp are the long-term solution for an industry that continually struggles with disease outbreaks such as vibrio, and indoor shrimp farming will become more successful as we get more farms built,” he said.Vibrio parahaemolyticus causes early mortality syndrome (EMS) in shrimp, also known as acute hepatopancreatic necrosis disease. It was first identified ten years ago in China, before spreading to Vietnam, Malaysia and Northern Borneo, then turning up in Thailand in 2012. The following year, EMS was identified in Mexico, brought in by infected live shrimp.Disease-free broodstock and strict biosecurity measures are two essential factors in helping to prevent outbreaks, and the latter is more easily achieved in indoor RAS operations.“The health status of our shrimp is carefully monitored and we have, so far, experienced no disease outbreaks in our RAS systems and use no antibiotics. Should problems be encountered, the affected animals can quickly be isolated and the outbreak contained,” said Wanuchsoontorn.RAS systems also offer major environmental advantages in terms of lower water consumption during production and zero discharge of waste.“We can achieve a reduction of 60-75 percent in water consumption in an RAS system,” said Wanuchsoontorn.“For example, to produce 1kg of harvested shrimp takes takes 1 m3 to 1.5 m3 of water in a RAS system, whereas the outdoor farms use more than 5 m3. This is a major saving in terms of cost and it’s better for the environment,” he added.Looking at the main challenges of converting all the company’s production facilities to indoor systems, Wanuchsoontorn identified cost, construction time, logistics and staff retraining as the big issues.“The company is confident that the large investment budget the project needs will have a positive impact on production. We are also investing heavily in upskilling staff to work with the new technology, and the overall project will improve local habitats, making the project a very positive move,” he said.CP Foods is also entering the shrimp farming arena in Sri Lanka, through the acquisition of a 75 percent share in Lotus Aquaculture. Meanwhile, in Brazil, CP Group recently bought a 40 percent share in shrimp producer Camanor Produtos Marinhos.Source : The Fish Site ...
Ten Easy Steps Towards Biofloc Production of Shrimp or Tilapia
Teknologi

Ten Easy Steps Towards Biofloc Production of Shrimp or Tilapia

Based on interviews with some of the earliest developers and adopters of biofloc, including Djames Lim from Singapore (CEO of the Lim Shrimp Organization), Khoo Eng Wah from Malaysia (managing director of Sepang Today Aquaculture Centre), Barkah Tri Basuki from Indonesia (Founder of Banglele Indonesia) and Dr Nyan Taw from Myanmar (senior shrimp farming consultant), The Fish Site presents a practical 10-step guide to help you incorporate biofloc principles in your shrimp or tilapia operations.The costliest factors in aquaculture are high-quality feeds, filtration systems and the investment needed for ample space to grow target species. With continuously rising production costs, farmers and researchers are looking for alternative ways to produce more seafood while utilising fewer resources. Originally conceived as a natural way to clean water, biofloc systems are becoming increasingly popular as a low-cost means of cleaning the culture water of fish and shrimp farms while simultaneously providing an additional source of feed. Best of all, implementing biofloc principles requires little investment – as only sunlight, a carbohydrate source and plenty of aeration are needed.Biofloc systems bank on photosynthesis to convert uneaten feeds, faeces and excess nutrients into food. While breaking down toxic ammonia and nitrates, both primary-producing autotrophic and heterotrophic bacteria multiply to attract an ever-growing host of organisms – including diatoms, fungi, algae, protozoans and various types of plankton. Loosely bound by bacterial mucous, most of these floating clumps or “flocs” are microscopic. Larger aggregations can be seen by the human eye, resembling brown or green sludge. Though not too appealing for humans, this is a scrumptious smorgasbord for fish and shrimp.By recycling proteins, biofloc systems overcome concerns associated with high animal-stocking densities and low filtration capacity – like decreased water quality and increased risk of disease outbreaks. In traditional farming systems, only about 25 percent of the protein content of feeds are actually utilised by farmed species. By converting ammonium into microbial proteins that can be consumed by filter feeders, biofloc systems are able to double this figure, saving farmers big money. Biofloc systems reduce the spread and effectiveness of pathogens while simultaneously improving fish health through better water quality and bolstered feed availability. As such, biofloc systems can give us a natural way of producing more seafood sustainably, while concurrently improving farm profitability.More of Asia’s top shrimp-industry players are shifting to biofloc. As Djames Lim, CEO of one of the largest shrimp farming operations in the region, explains: “Without biofloc our company wouldn’t be able to achieve its ambitious growth rates without compromising environmental integrity and animal-welfare principles. This system is a win-win situation for all stakeholders.”It’s important to understand that biofloc systems and their underlying principles are relatively new and complicated aquaculture concepts. There are still many unknowns and much remains to be discovered. We encourage readers to conduct further research and to share their experiences to maximise everyone’s chances of success. And don’t forget to check out the training reference section at the end of the article for some very useful links.Step 1: Tank or pond set-upThough it’s possible to convert traditional fish ponds without any liner into a biofloc system, it’s a challenging task. Microbes, minerals and heavy metals naturally based in the soil easily influence the parameters of the pond water and can affect the natural processes underlying the biofloc system. As Khoo Eng Wah, managing director of the Sepang Today Aquaculture Centre (STAC) in Malaysia explains: “For those new to biofloc, it’s best to start with lined ponds, concrete ponds or indoor tanks wherein soil has no influence over water parameters or biofloc processes.” In most tropical countries, indoor systems have a big advantage. “As we experience heavy rainfall, alkalinity and pH are easily affected in outdoor systems. Covered ponds are good options.”Indoor tanks or raceways can be used as well, but without the presence of natural sunlight, algae won’t grow sufficiently or won’t grow at all – creating a biofloc system based solely on bacteria. These so-called “brown biofloc systems“ are brown in colour and are discussed in more depth later (Step 7).If you use large ponds you should instal bottom drains to occasionally remove excess sludge. This is especially important when adding carbohydrates on a regular basis, which adds considerably more sludge to the pond (Step 4). A second option is to use biofloc reactors to accelerate the conversion of pond sludge to bioflocs.Step 2: AerationAfter you have selected the right pond or tank set-up, it’s time to work on the aeration system. All biofloc systems require constant motion to maintain both high oxygen levels and to keep solids from settling. Areas without movement will rapidly lose oxygen and turn into anaerobic zones which release large amounts of ammonia and methane.To prevent this, every pond, tank or raceway system needs a well-planned layout of aerators. Ponds typically use paddlewheel aerators. Biofloc systems require up to 6mg of oxygen per litre per hour and it is recommended to start with at least 30 horsepower of aerators per hectare. But, depending on the intensity and productivity of the system, this number can reach as high as 200 horsepower per hectare (See table 1 from the Southern Regional Aquaculture Center further on). Paddlewheel aerators should be installed strategically so that a current is created in the pond. You also need to regularly move some of the aerators to ensure solid particles won’t settle in areas with little or no current.Step 3: Pre-seeding beneficial microbesTo accelerate the development of your biofloc system and stabilise your pond faster, it is advisable to pre-seed the culture water. This can be done by adding a number of commercial or homemade recipes to the culture water. INVE and VINNBIO are two of the better-known companies that provide starter cultures for various probiotic microbes, but there are many locally produced brands available across Asia as well (just check out online forums or Alibaba). A simple homemade recipe to quickly produce probiotic and prebiotic microbes uses wheat pollard and Red Cap 48 (a local product from South-East Asia) mixed in a closed drum and left to ferment for 48 hours, after which the contents can be added to the pond.Step 4: Species selection and stocking densitiesThough most species would benefit from the improved water quality of biofloc systems, you want to select species that best benefit from the extra proteins generated, by feeding and digesting the bioflocs themselves. These species are wholly or partially filter feeders. Both shrimp and tilapia are excellent candidates, as they gobble up bioflocs, thereby dramatically improving the feeding efficiency and FCR of your farming operation.At STAC in Malaysia, even non-filter feeders like jade perch and different groupers have been farmed in indoor biofloc systems, with very positive results. It is however important to avoid species which dislike murky waters with a high solid content, like some catfish and barbs. These species simply won’t perform as well.Thanks to the strong aeration and self-filtering capacity of culture water, high stocking densities can be considered and it is common to stock shrimp at densities of 150 to 250 post-larvae per square metre. A safe stocking density for tilapia would be 200 to 300 fry per cubic metre. Many farmers try to use higher stocking densities but this significantly increases the risk of disease, compromising both the health and welfare of the animals.Step 5: Balancing carbon source input To prevent ammonia peaks (mostly originating from the nitrogen in feeds) at the start of the farming cycle, we recommend jump-starting the growth and development of biofloc in your pond or raceway system by ensuring the sufficient availability of carbohydrates. The carbon in these carbohydrates enables heterotrophic bacteria to multiply and synthesise ammonia, thus maintaining water quality.We advise that you select only carbon sources and feed mixtures with a carbon-to-nitrogen (C/N) ratio above 10 as this favours the growth of these heterotrophic bacteria. Since most fish and shrimp feeds have a C/N ratio of 9:1 or 10:1, additional inputs are needed to raise this ratio to between 12:1 and 15:1. Any material that contains simple sugars and breaks down quickly can be used, such as molasses, cassava, hay, sugarcane or starch. Another solution is to reduce the protein content of the used feeds.To prevent ammonia peaks at later stages of the production process, this step should be repeated, especially when using high stocking densities in combination with large amounts of artificial feeds.Controlling this is one of the hardest steps for successfully implementing biofloc principles.Step 6: Biofloc growthWith plenty of aeration, natural light (in most systems) and a readily available source of carbon, your biofloc numbers should start to multiply quickly. Depending on a variety of factors, including water temperature, available nutrients and sunlight, plus the number of seeded bioflocs at the start of the operation, the number of flocs will increase from close to zero to about four to five units per millilitre within a few weeks. Eventually an incredible density of up to 10 billion bacteria per cubic centimetre can be expected with, as Nyan Taw explains, “An incredible diversity of over 2,000 species,” all working hard to minimise the ammonia content in the water column and maintain good water quality.Monitoring the growth of these flocs can be done by using a cone-shaped beaker to collect several water samples at a depth of 15cm to 25cm, preferably in the late morning. The solid particles should be left to settle for 20 minutes. They will stick to the sides of the cone-shaped beaker, making it easy to count them. For larger operations, the Mil Kin bacterial counter is a handy tool as well.Step 7: Monitoring and control of biofloc developmentFrom this point on, water samples must be regularly taken to monitor the pond water and determine the activity of the two biofloc types plus their respective densities. In simple terms, outdoor bioflocs consist of green algae and brown bacteria: the algae mainly utilise sunlight for their growth, while the bacteria mostly consume leftover feeds, their byproducts and associated wastes. Since algae initially tend to multiply faster, this means that a pond looks green at first, turning brown over the following weeks as bacterial colonies start to dominate. With the stock growing and feeding volumes increasing, a tipping point will be reached wherein the water will remain brown. As Nyan Taw explains: “This brown colour is more quickly reached with tilapia as they are fed with more feeds, while it takes a bit longer with shrimp.” This colour shift is well illustrated in the colour index of Figure 4.Step 8: Monitoring and control of water parameters and associated farm infrastructureOnce the biofloc system has turned brown, aeration must be significantly increased to sustain the high respiration rate. As shown in Figure 4, respiration rates at this stage can reach 6mg per litre per hour, requiring up to six times more energy per hectare compared with the start of operations.Any power failure at this stage can quickly result in total crop failure due to a lack of oxygen and because in a low-oxygen environment many heterotrophic bacteria actually start producing ammonia. It is vital for the aeration system to stay functional at all times.This means good maintenance and monitoring of the aerators themselves, plus the power system that provides the energy to run this system. As the power grid in many Asian countries is not too reliable, especially in the rural areas where many farming operations are based, it is advisable for farmers to invest in off-grid solutions. Several manufacturers of paddlewheel aerators offer solar-powered versions. These are however more costly and not always that powerful. A large diesel generator, including a second back-up generator set, might be the best option for most large-farm operations.Regular monitoring of water-quality parameters, especially dissolved oxygen and ammonia levels, will give you a good idea if the system is working well, or if aeration needs to be increased further.Step 9: Monitoring and control of farm stockBesides maintaining water quality at lower cost and without water exchange, the second goal of a biofloc system is to improve growth rates and feeding efficiencies, thereby improving the profitability and sustainability of farming operations. To check how the farm is doing, regular monitoring of the performance of the farm stock, calculating and recording growth rates, overall appearance, FCR and stock survival is required. It has been estimated that for every unit of growth in your stock from feed, an additional 0.25 to 0.5 units of growth can come from the biofloc in your system. You should thus notice a big jump when comparing current farm records with your previous, traditional non-biofloc farm operations.Step 10: Harvest and clean-upFor shrimp, a harvest of 20 to 25 tonnes per hectare can be safely expected. If all steps have been followed, a farmer can expect increased growth rates and survival, thus reducing overhead costs and improving profitability. Often forgotten and underestimated, proper cleaning and preparation of the pond set-up or raceway is vital after harvest time. Although it might seem appealing to reuse the culture water since it took intensive effort to build up the populations of microorganisms, this is not advisable. Pathogens might have built up the culture and can pose a serious biosecurity risk. Research has also indicated that over time, heavy metals can build up in the culture water, which can accumulate in your stock, making it unsuitable for human consumption. We highly recommend cleaning up well before starting your next profitable batch.Source : The Fish Site ...
Paddlewheel More Cost Effective Than Pump
Teknologi

Paddlewheel More Cost Effective Than Pump

Paddlewheel aerators are superior to pumps in aerating ponds Using paddlewheels for aeration in split ponds brings down costs. Using paddlewheels for aeration in split ponds brings down costs and is also much more effective than using pumps, research shows.A team at the Mississippi State University’s (MSU) Delta Research and Extension Center produced a “very robust design” to improve circulation between the split pond’s waste-treatment area and the fish area.“My work recognizes the paddlewheel as being far superior to any other pump option. Correct sizing of the return flow pipes can reduce cost and improve performance,” said Dr Jonathan Pote, head of the Department of Agricultural and Biological Engineering at MSU.Pole said the split-pond aquaculture system has been proven to have advantages over traditional ponds in terms of cost, production and operation. It produces more pound of fish per area. It is also easier to manage in terms of stocking, feeding and harvesting because these are done in a much smaller area. Aeration is also less costly since the volume aerated is much smaller. However, additional investment is needed for the construction and controls. Aeration in split ponds is critical, especially towards the end of production cycle. “In the late season, when the fish are extremely large, the nutrient and algae concentration are at their maximum. The system becomes unstable, reaching extremely high and low dissolved oxygen concentrations. It is critical that the produce is harvested on time. Any delay contributes to fish losses and poor quality fish and endangers the whole system,” Pole said.Source : Aquaculture North America ...
Kampung Teknologi Perikanan Hadir di Lampung Selatan
Teknologi

Kampung Teknologi Perikanan Hadir di Lampung Selatan

Lampung Selatan (ANTARA) - eFishery, startup yang bergerak di bidang pengembangan pemanfaatan teknologi untuk sektor perikanan meresmikan Kampung Teknologi Perikanan di Desa Rejomulyo, Kecamatan Palas, Kabupaten Lampung Selatan."Sejak didirikan pada  2013, eFishery fokus mengembangkan teknologi Internet of Things (IoT) yang bertujuan membantu para petani ikan dan udang dalam proses pemberian pakan secara cerdas dan otomatis," kata Co-founder dan CEO eFishery, Gibran Huzaifah,di Palas, Lampung Selatan, Sabtu.Pada perjalanannya, lanjut dia, eFishery berkembang tidak hanya dalam kegiatan bisnis berupa pengembangan dan penjualan smart autofeeder, namun berupaya menyediakan ekosistem terpadu dimana segala kebutuhan mitra petani ikan dan udang dapat terpenuhi dengan lebih mudah dan tepat guna.Ia menyebutkan, setelah peresmian Kampung Perikanan Digital di Desa Losarang (Indramayu) pada penghujung  2018, kini memasuki bulan Ramadhan 2019, eFishery mengadakan Kampung Teknologi Perikanan di Desa Rejomulyo (Lampung Selatan) yang berfokus tidak hanya pada pemanfaatan autofeeder eFishery namun juga termasuk penyediaan akses permodalan.Jumlah mitra petani yang turut ambil bagian dalam skema kerja sama dengan iGrow ini ditargetkan 100 petani, dengan total produksi tahunan mencapai 400.000 kg.Komitmen penyediaan modal kerja dari iGrow dan eFishery dalam skema pendanaan mitra petani Kampung Teknologi Perikanan Lampung Selatan ini diharapkan bisa mencapai Rp 2,5 miliar yang akan dibagi ke dalam beberapa tahapan."Sejak akhir 2018, kami memang memberi porsi fokus yang sangat besar terhadap peluncuran, pelaksanaan, dan efektivitas dari inisiatif ini," ujarnya.Dimulai dari Desa Losarang di Indramayu, menjelang bulan Ramadhan tahun 2019, pihaknya memasuki area Lampung Selatan di mana ditahap pertama 50 mitra budi daya ikan patin akan menerima bantuan pelaksanaan bisnis berupa akses permodalan senilai Rp1,25 miliar dan pemanfaatan smart autofeeder kami yang mampu meningkatkan efektivitas pemberian pakan dan percepatan pertumbuhan hingga 25 persen.iGrow, sebagai perusahaan P2P lending yang berfokus pada penyediaan dana gotong royong (berasal dari masyarakat) untuk kebutuhan sektor agrikultur di Indonesia, menyambut baik kerjasama dengan eFishery pada Kampung Teknologi Perikanan di Lampung kali ini."Kerja sama ini kami harapkan hanyaawalan saja dari rangkaian inisiatif lain untuk pemberdayaan masyarakat ke depan," kata CEO iGrow, Andreas Sanjaya.Ia menjelaskan, hal ini merupakan fondasi untuk membangun sinergi yang lebih luas lagi antara pemain di dunia agriculture tech startup Indonesia."Komitmen kami dengan eFishery semoga dapat berbuah lebih banyak lagi kerjasama sejenis untuk membangun Indonesia yang lebih baik," tambahnya.Sumber : Antaranews.com ...
Teknologi Jaring UHMWPE Sekuat Baja
Teknologi

Teknologi Jaring UHMWPE Sekuat Baja

Budidaya ikan atau akuakultur adalah industri yang berkembang dengan cepat di Indonesia. Hingga tahun 2016, tercatat oleh FAO bahwa Indonesia telah mampu memproduksi 5 juta ton ikan (tidak termasuk rumput laut) yang mencakup berbagai macam spesies ikan air laut, tawar, maupun payau.Budidaya ikan di dalam keramba jaring apung (KJA) HDPE adalah salah satu cara yang paling konsisten untuk memproduksi ikan dalam jumlah besar. KJA HDPE yang tahan ombak dan ramah lingkungan adalah kunci dari praktek budidaya ikan yang berkelanjutan dan menguntungkan. Hanya saja, aspek yang tidak kalah pentingnya dari menggunakan KJA HDPE adalah penggunaan jaring yang tepat pada keramba.General Manager PT Gani Arta Dwitunggal, Andi Jayaprawira mengatakan, budidaya ikan tidak bisa menggunakan jaring atau net yang sama dengan jaring tangkap. Jaring tangkap, memiliki tonjolan-tonjolan simpul (knotted) yang besar dan sangat kasar sehingga beresiko tinggi menimbulkan luka pada ikan.Luka ini dapat menimbulkan cacat berupa baretan pada sisik ikan, dan dapat menimbulkan infeksi yang dapat meningkatkan mortality rate, sehingga penggunaan jaring bersimpul sangat tidak disarankan.Beli jaring knotless disini!Oleh karenanya, kata Andi, pembudidaya ikan sangat disarankan menggunakan jaring tanpa simpul (knotless) yang berpermukaan halus. Jaring tanpa simpul tidak menimbulkan luka pada sisik ikan sehingga dapat menekan mortality rate, juga meningkatkan nilai jual ikan dikarenakan ikan memiliki sisik yang sempurna.Di pasaran, jaring tanpa simpul tersedia dalam bermacam-macam bahan, mulai dari HDPE, metal, hingga UHMWPE. Kategori pertama, yaitu jaring HDPE tanpa simpul memiliki konstruksi yang ringan dan fleksibel, sehingga mudah untuk dioperasikan, dengan harga yang terjangkau.Jaring ini tersedia secara luas di pasaran dan telah diproduksi di dalam negeri oleh perusahaan penyedia alat sarana dan prasaranan perikanan budidaya dalam negeri PT. Gani Arta Dwitunggal dengan merk Aquatec. Kategori kedua, yaitu jaring metal, memiliki kontsruksi yang berat dan kaku, namun umumnya dipakai dengan tujuan untuk menghalau predator.Kategori ketiga, yaitu jaring UHMWPE tanpa simpul, merupakan inovasi jaring budidaya ikan baru yang mulai populer. Namun, apa itu UHMWPE? UHMWPE adalah singkatan dari Ultra High Molecular Weight Polyethylene, yaitu material yang memiliki kekuatan tarikan (tensile strength) lebih kuat daripada baja, akan tetapi ringan dan fleksibel. Oleh karena kekuatannya, bahan UHMWPE telah dipakai dalam beberapa industri berat menggantikan rantai baja dan seling baja.Jaring UHMWPE tanpa simpul adalah jaring budidaya yang dibuat menggunakan material tersebut, sehingga tiap pilar jaring memiliki kekuatan setara dengan kawat baja berukuran sama. Oleh karena tiap pilar memiliki kekuatan setara kawat baja, maka satu bentang jaring UHMWPE tanpa simpul sangatlah kuat dan mampu benahan beban hingga beberapa ton. Bebas PredatorSelain dari kekuatan tarikan, Andi memaparkan, bahan UHMWPE juga sangat sulit untuk dipotong dan tahan korosi. Jaring UHMWPE tanpa simpul dipakai untuk melindungi ikan dari predator di laut maupun air tawar dan terbukti mampu menghadapi serangan berbagai predator seperti ikan barracuda, ikan buntal, ikan bawal, kepiting, penyu, dan berbagai predator lainnya hingga hiu berukuran tertentu. Dengan demikian, ikan budidaya aman hingga masa panen sekalipun KJA dipasang di area yang memiliki populasi predator tinggi.Indonesia sebagai negara maritim memang memiliki populasi predator laut yang tinggi, yang apabila tidak diantisipasi dapat mengganggu usaha budidaya ikan di laut (marikultur). Padahal, potensi ekonomi budidaya ikan laut sangat tinggi dikarenakan nilai komoditasnya lebih tinggi dari nilai komoditas ikan air tawar, sehingga jaring budidaya anti predator ini sangat dibutuhkan.Mengenai ketahanan dalam menghadapi predator, jaring budidaya UHMWPE dapat dibandingkan dengan jaring dari bahan metal. Dari segi harga, jaring budidaya UHMWPE memiliki harga jauh lebih ekonomis dari jaring berbahan metal, sehingga merupakan pilihan yang lebih baik dan terjangkau untuk pembudidaya ikan.Selain itu, tidak seperti jaring metal, jaring budidaya UHMWPE yang ringan dan tidak kaku membuatnya mudah dipasang di lapangan dan mudah untuk diangkat ke permukaan pada saat pembersihan jaring dan panen.Baca juga: Net Gains in Aquaculture Net Technology“Jaring budidaya UHMWPE tanpa simpul PT Gani Arta Dwitunggal sudah digunakan oleh beberapa perusahaan di Bali untuk memelihara ikan kakap putih dan menghalau predator berupa ikan barracuda dan hiu,” ujar Andi.Andi menuturkan, sepanjang masa pemakaian, tidak ada satupun jaring yang mengalami robek bahkan setelah digigit oleh hiu berukuran sedang. Permukaan tanpa simpul yang halus menghasilkan ikan kakap putih dengan sisik yang sempurna, dan tercatat memiliki mortality rate rendah dan survival rate yang tinggi. Ikan kakap putih tersebut kemudian diekspor ke Australia dan Amerika Serikat.Jaring budidaya UHMWPE tanpa simpul umumnya memiliki harga 2-2,5 kali dari harga jaring budidaya HDPE tanpa simpul, dengan umur pakai mencapai 10 tahun di laut dan mencapai 15 tahun di air tawar dengan perawatan teratur.Melihat dari manfaatnya dalam mencegah predator, kemudahan pemakaian, dan umur pakai yang tinggi, jaring budidaya UHMWPE tanpa simpul diprediksi akan menempati pasaran yang unik dalam industri budidaya ikan di Indonesia sebagai solusi terbaik budidaya ikan bebas predator. (Adit) Artikel AsliTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
Microbubble Generator, Solusi Masalah Perikanan Budidaya
Teknologi

Microbubble Generator, Solusi Masalah Perikanan Budidaya

Masalah perikanan Indonesia bisa dikatakan cukup kompleks. Jika pada awalnya produksi utama perikanan di Indonesia hanya mengandalkan perikanan tangkap, kini harus merambah ke perikanan budidaya. ASEAN terutama Indonesia memiliki tantangan untuk meningkatkan produksi industri perikanan budidaya menjadi 15 juta ton pada tahun 2030 mendatang.Perikanan budidaya di Indonesia masih memiliki beberapa kendala. Salah satu kendalanya yakni keterbatasan lahan untuk budidaya ikan. Berdasarkan data dari Badan Informasi Geospasial tahun 2012, total area yang digunakan untuk budidaya ikan di Indonesia sekitar 500 ribu hektare. Permasalahan utama ada pada metode budidaya ekstensi yang membutuhkan lahan luas untuk meningkatkan produksi, padahal harga tanah setiap tahun semakin mahal. Ini akan menghambat petani-petani kecil yang tidak memiliki lahan yang cukup luas untuk budidaya ikanFajar Sidik Abdullah Kelana, peneliti Microbubble Generator dari Universitas Gadjah Mada Yogyakarta, menjelaskan alat Microbubble Generator ini bisa menjadi salah satu solusi bagi petani kecil, khususnya yang memiliki keterbatasan lahan untuk pembenihan kolam.Baca juga: Application of Micro Bubbles Technology in Catfish Rearing“Jadi ini alat yang bisa memproduksi gelembung oksigen ukuran mikro, yang tujuannya untuk meningkatkan oksigen terlarut di dalam air. Efeknya ternyata setelah kita coba di perikanan, oksigen terlarutnya naik sampai 7 ppm yang biasanya 3 ppm. Efeknya ke hasil produksi ikan dengan bobot lebih berat 30% dari yang pakai alat biasa,” imbuhnya. Temukan berbagai aerator disini!Teknologi Microbubble Generator (MBG) memungkinkan petani ikan untuk membuat kolam yang lebih dalam dibandingkan dengan sistem aerator pada umumnya, karena dapat meningkatkan hasil panen tanpa harus membuka dan membutuhkan lahan yang luas.Dengan tiga komponen utamanya; pompa air, saluran udara, dan microbubble generator di bagian pembuangan, teknologi ini merupakan implementasi dari aliran dua fasa dengan memvariasikan kuantitas debit udara dan air untuk menghasilkan diameter mikro gelembung ukuran 40 µm. Ukuran mikro-diameter ini dapat meningkatkan jumlah oksigen terlarut dalam air yang penting untuk pertumbuhan ikan.Keunggulan dari Mircobubble Generator antara lain distribusi oksigen yang lebih baik dalam setiap lini kedalaman kolam, sehingga meningkatkan kualitas air kolam, dapat diaplikasikan pada kolam yang sempit dengan menambah kedalaman kolam, serta meminimalkan penggunaan air. Ikan yang tumbuh di kolam yang menggunakan Microbubble Generator bisa naik bobotnya hingga 40%, dengan survival rate 12,7%. Lebih lanjut, Fajar mengatakan bahwa MBG yang merupakan salah satu riset yang dilakukan mahasiswa di Pusat Studi Energi UGM ini awalnya digunakan untuk pengolahan air limbah, lalu setelah melakukan riset di bidang perikanan ternyata menghasilkan perubahan yang signifikan.“Selama ini perjalanan dari 2016 kita bikinnya di kampus sampai 2018, kebetulan dapat support dari Pak Moeldoko dan melalui PT MDK ini jadi bisa mass production. Untuk produksi nanti kita modelnya batch sih, batch pertama itu 20.000 pcs. Baru nanti bulan Agustus dipasarkannya,” terang Fajar.Ke depannya Fajar beserta tim yang terdiri dari belasan staf departemen teknik mesin, teknik kimia dan teknik perikanan UGM, ingin mengembangkan inovasi ke teknologi perikanan lainnya, misal teknologi Microbubble Generator yang digabung dengan teknologi panel surya.“Panel surya ini nanti support, misal di Asmat ada kasus kelaparan, kalau kita punya peternakan ikan yang mandiri di daerah terpencil support langsung pake energi terbarukan, ketahanan pangan di daerah plural di daerah asmat bisa lebih terjamin. Kelebihannya bisa menghemat listrik hingga 50%,” jelasnya.Fajar juga berharap penelitian yang selama ini dilakukan di tataran akademisi universitas bisa bermanfaat bagi masyarakat, tidak hanya sekadar berakhir di laboratorium saja.Baca juga: KKP Kerja Sama IPB Tingkatkan Pendidikan dan Riset“Visi misi tim yang terbentuk sih, teknologi di kampus-kampus tidak cuma di skala lab saja, tapi ingin juga dipakai di masyarakat dan buat industri. Visi kita buat petani-petani kecil, rakyat kecil. Mungkin nanti buat pertanian juga. Ada teknologi-teknologi yang diadopsi dari kampus, diuji coba real, dengan harga yang juga terjangkau, ”kata Fajar.Microbubble Generator awalnya diteliti dan dikembangkan dalam skala laboratorium. Produk Microbubble Generator telah berinovasi dari segi dimensi dan kerumitannya. Dengan desain terbaru, optimasi konsumsi listrik bisa dihemat hingga 25 watt untuk satu unit MBG.Beberapa penghargaan yang pernah diraih oleh peneliti serta pengembang MBG, antara lain 1st Champion of YSEALI World of Food Innovation Challenge powered by USAID, Finalist of ASME ISHOW (Innovation Showcase) di Bangalore India pada 2017, Semifinalist of Global Social Venture South East Asia Region (GSVC-SEA), Indonesia Delegation for Youth Ag-Summit 2017, 1st Winner of APJ Cisco Global Problem Solver Challenge, dan 1st World Champion of Ideas For Action 2018 powered by World Bank Group.Sumber : M-News Tentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.    ...