Infomina - Nila

Minapoli adalah platform jaringan infomasi dan bisnis perikanan terintegrasi. Buat dan bagikan informasi perikanan sekarang dan temukan manfaatnya terkoneksi dengan jaringan Minapoli.

Nila

Tangkal TiLV Pada Ikan Nila Sejak Dini
Nila

Tangkal TiLV Pada Ikan Nila Sejak Dini

Beberapa tahun belakangan, merebak penyakit virus pada ikan nila atau Tilapia Lake Virus (TiLV) yang diderita oleh beberapa negara produsen ikan tersebut membuat Indonesia menyetop stok impor. Kementerian Kelautan dan Perikanan melalui Direktorat Jenderal Perikanan Budidaya (DJPB) kemudian mengeluarkan surat edaran nomor 3975/DJPB/VII/2017 pada 14 Juli lalu.Surat edaran tersebut berisi tentang pencegahan dan pemantauan terhadap Penyakit TiLV pada ikan nila. Setidaknya, ada lima langkah yang dapat dilakukan agar Indonesia terhindar dari TiLV, dan hal tersebut terus dilakukan secara sinergis dan koordinatif oleh seluruh stakeholder perikanan budidaya, mulai dari pelaku, peneliti/akademisi, dan pengambil kebijakan.Dalam edarannya, DJPB mengatakan kelima langkah tersebut, pertama, melarang pemasukan calon induk, induk, dan/atau benih ikan Nila dari negara yang terkena wabah TiLV yaitu Israel, Kolombia, Ekuador, Mesir, dan Thailand.Baca juga: Budidaya Ikan Nila di Kolam Tanah bagi PemulaKedua, pemerintah membatasi pemasukan calon induk, induk, dan/atau benih ikan Nila dari negara yang tidak terkena wabah dengan memenuhi ketentuan wajib melampirkan izin pemasukan ikan hidup, melampirkan sertifikat kesehatan ikan dan uji hasil mutu.Ketiga, Indonesia untuk sementara tidak melakukan kegiatan penebaran benih Tilapia di perairan umum. Keempat, akan dilakukan pengujian laboratorium di pintu pemasukan dan pengeluaran antar daerah untuk Nila.Kemudian, kelima, pemerintah meminta seluruh Unit Pelaksana Teknis (UPT) lingkup DJPB dan Dinas Perikanan Provinsi/Kabupaten/Kota melakukan surveilan serta monitoring terhadap penyakit TiLV.Hingga saat ini belum ada wabah dan atau laporan kasus penyakit TiLV di Indonesia yang menimbulkan kematian sangat tinggi dan atau kerugian ekonomi yang signifikan, seperti halnya yang terjadi di beberapa Negara terdampak.Baca juga: Budidaya Ikan Nila di Kolam Air DerasMeskipun demikian, Taukhid mengatakan, “potensi kemunculan dan dampak negatif dari penyakit tersebut tetap harus disikapi secara proporsional dan terukur,” ujarnya.Lantas, jika TiLV sudah terlihat menyerang kolam-kolam bagaimana antisipasi pertama yang harus dilakukan pembudidaya agar penyakit tersebut tidak menimbulkan dampak kerugian yang besar serta seperti apa pencegahan sejak dini TiLV yang harus dilakukan pembudidaya.Taukhid memaparkan, gejala klinis umum yang mengindikasikan adanya infeksi TiLV pada ikan nila antara lain lemah, katarak (endophthalmitis), exopthalmia, penyusutan mata dan phthisis bulbi, pengelupasan kulit/erosi dan ulcus, kongesti ginjal, peradangan otak (encephalitis), dan pembengkakan di hati.“Organ atau jaringan yang dipilih sebagai materi uji deteksi TiLV secara molekuler adalah mata, otak, hati, limpa dan ginjal,” kata Taukhid.Baca juga: Pentingnya Seleksi pada Pembenihan NilaLangkah antisipatif untuk mencegah TiLV, menurut Taukhid, pada unit usaha atau kolam budidaya ikan nila antara lain dapat dilakukan melalui:1. Benih atau bibit ikan nila yang digunakan bebas dari infeksi TiLV yang dapat ditelusur (traceability) sumber populasi induk, baik dari sejarah asal usul maupun hasil pemeriksaan laboratorium.2. Pada kawasan budidaya ikan nila yang menggunakan sumber air yang sama (daerah aliran sungai/DAS), belum ditemukan adanya kasus penyakit tersebut.3. Memastikan bahwa prosedur budidaya ikan selalu dilakukan secara baik dan benar sesuai kaidah Cara Budidaya Ikan yang Baik (CBIB).4. Membangun sistem informasi dini antar pelaku budidaya ikan nila terkait status penyakit tersebut.Taukhid melanjutkan, apabila pada unit budidaya ikan nila terlihat adanya ikan-ikan yang menunjukkan gejala klinis disertai kematian yang diduga akibat penyakit tersebut, maka tindakan yang sebaiknya dilakukan adalah:1. Mengisolasi dan pemantauan secara intensif terhadap populasi ikan yang diduga terinfeksi TiLV.2. Menginformasikan kepada pihak terkait atau petugas yang kompeten untuk tindak lanjut penanganan teknis dan atau pengambilan sampel untuk pemeriksaan laboratoris dalam rangka konfirmasi penyebab utama penyakit tersebut.3. Pada populasi ikan nila yang sedang sakit, kurangi porsi pakan harian dan tambahkan unsur imunostimulan untuk menigkatkan ketahanan tubuh ikan.4. Pada kondisi kolam yang dapat dikontrol, upayakan flukutasi suhu air dalam periode 24 jam tidak lebih dari 2 oCelcius.5. Ikan yang mati segera diambil, selanjutnya dibuang/dikubur untuk memastikan bahwa bangkai ikan tersebut tidak berpotensi sebagai sumber penularan untuk ikan nila lainnya.Baca juga: Tumbuh Optimal dengan HerbalBelum ada obat atau bahan kimia yang efektif untuk mengobati ikan nila yang terinfeksi virus TiLV, kecuali penggunaan desinfektan untuk tujuan desinfeksi sarana dan prasarana selama proses produksi.Beberapa informasi teknis menurut Taikhid yang mungkin perlu menjadi pertimbangkan dalam pengendalian penyakit TiLV pada budidaya ikan nila. Secara laboratoris, menurutnya, beberapa strain ikan nila yang telah berkembang di masyarakat memiliki tingkat resistensi yang berbeda terhadap penyakit TiLV.Pola kematian ikan nila akibat penyakit TiLV berlangsung secara sub-akut hingga akut dengan masa inkubasi antara 1 – 14 hari. Individu ikan yang mampu bertahan hidup (survivors) akan mengalami proses penyembuhan, bertahan hidup dan terbentuk kekebalan terhadap penyakit tersebut. Namun status selanjutnya dari individu tersebut (potential carrier or totally eradicated) belum diketahui secara pasti.“Faktor pemicu yang determinan terhadap munculnya kasus penyakit TiLV adalah fluktuasi suhu air yang cukup besar dalam periode 24 jam,” pungkas TaukhidSumber: agribiznetwork.com ...
Cara Memanen Ikan Nila Secara Total Dan Sebagian
Nila

Cara Memanen Ikan Nila Secara Total Dan Sebagian

Panen merupakan saat yang sagat dinantikan oleh para pembudidaya ikan nila. Pasalnya, para pembudidaya bisa mengharapkan untung dar budidaya pembesaran ikan nila ini.Waktu pemanenan pada setiap sistem budidaya tidak pernah sama . Waktu panen biasanya tergantung dari permintaan pasar. Waktu panen ikan nila untuk pasar lokal dan waktu panen  untuk keperluan ekspor atau industri pasti berbeda.Pemenenan ikan nila biasanya dilakukan dengan cara panen total. Namun, beberapa petani melakukan panen sebagian karena alasan tertentu. Misalnya karena pertumbuhan ikan tidak sama maka dilakukan panen sebagian. berikut ini ulasan tentang cara memanen ikan nila secara total dan sebagainya.Baca juga: Teknik Jaring Gelar Panen Benih Nila lebih Menguntungkan Panen TotalPanen total dilakukan dengan cara mengeringkan kolam , hinga ketinggian air tinggal 10 cm. Petak pemanen atau petak penangkapan dibuat seluas 1 m2 di depan pintu pengeluaran ( monnik), sehinga memudahkan dalam penangkapan ikan.Panen SebagianPanen sebagian di sebut juga panen selektif. Kegiatan yang dilakukan dalam panen sebagian adalah tanpa pengeringan kolam. Ikan yang akan di panen dipilih dengan ukuran tertentu.Baca juga: Sekali Panen Ikan Raup Cuan Belasan Juta, Mau Coba Jadi Petani Milenial?Panen dilakukan dengan mengunakan waring yang diatasnya telah ditaburi umpan (dadak). Ikan yang tidak terpilih (biasanya terluka akibat jaring) sebelum dikembalikan ke dalam kolam sebaiknya di pisahkan dan diberikan obat dengan larutan malachite gree 0,5-10 ppm selama 1 jam.Langkah pemanennan sebenarnya sederhana saja,Hal hal yangperlu dilakukan adalah menghindari ikan nila yang terluka dan menghindari ikan nila stres jika inggin dijual dalam keadaan hiduo dan segar.Sumber: ikannila.com ...
Teknik Jaring Gelar Panen Benih Nila lebih Menguntungkan
Nila

Teknik Jaring Gelar Panen Benih Nila lebih Menguntungkan

Kebutuhan benih ikan nila di Bali cukup tinggi dan belum mampu dipenuhi oleh para petani pembibitan ikan nila, sehingga benih banyak didatangkan dari luar Bali. Kendala pembibitan selama ini adalah tingginya benih yang mati, saat di panen. Namun dengan teknik jaring gelar 100% benih ikan hidup dan siap dibesarkan.Cara panen benih ikan nila menjadi kunci sukses dan tidaknya budi daya pembesaran ikan nila. Cara panen yang salah menurut Ir. I Made Kawan, Mp., Dosen Teknologi Pembenihan, Fakultas Pentanian Universitas Warmadewa, bisa berdampak pada matinya sebagian benih ikan dan juga lambatnya perkembangan ikan dalam pembesaran.Selama ini petani ikan nila yang tergabung dalam kelompok Mina Anakan Jepun, Desa Bebetin, Sawangan, Kabupaten Buleleng panen bibit dengan cara tradisional dan 50% dari benih akan mati. “Melihat persoalan yang dihadapi petani ikan ini, kami lakukan pendampingan dengan menggunakan dana hibah dari Universitas. Kami dampingi petani ikan dan lakukan transfer teknologi sehingga hasil panen lebih banyak,” tutur Made Kawan.Baca juga: Budidaya Ikan Nila di Kolam Tanah Bagi PemulaDikatakan kebutuhan benih ikan nila di Bali, khususnya untuk petani ikan apung di Batur, membutuhkan banyak bibit. “Sekarang sedang kekurangan benih ikan, karena petani ikan di Batur baru habis panen jadi membutuhkan banyak benih. Jadi budi daya pembenihan ikan nila sangat menjanjikan,” ungkapnya.Untuk mendapatkan benih ikan yang banyak dan berkumpul dikatakan ada sejumlah teknologi sehingga menghasilkan benih yang sesuai dengan kebutuhan untuk pembesaran maupun yang mampu bertahan hidup dalam pengiriman dan pembesaran.“Teknologi pertama yang kami berikan kepada petani ikan adalah dengan menggunakan jaring gelar saat panen benih. Biasanya petani panen benih bersamaan dengan induknya, sehingga induknya yang menggelepar membuat lumpur masuk ke dalam insang benih ikan yang berdampak 50% benih menjadi mati,” terangnya. Benih yang hidup pun, membutuhkan waktu sekitar sebulan untuk menyembuhkan diri, sehingga perkembangannya terhambat.Baca juga: Budidaya Ikan Nila di Kolam Air Deras“Teknologi ini sebenarnya cukup sederhana, yaitu sebelum kolam dikeringkan pasang dulu jaring lalu keringkan kolam. Begitu air berkurang beri pakan pada bagian tengah jaring, sehingga ikan berkumpul, lalu angkat jaring dan letakkan benih di bak penampungan,” terangnya.Setelah itu baru dilakukan greading atau penyeragaman ukuran. Ukuran 5-7 cm harga Rp400/ ekor, ukuran 7-9 cm Rp500 dan ukuran 9-12 cm Rp600, harga di tingkat petani belum ongkos kirim.“Dengan menggunakan teknologi jaring gelar ini, benih dari kelompok tani sudah terkenal kualitasnya yaitu daya hidup tinggi dalam pengiriman dan membutuhkan waktu lebih pendek dalam pembesaran,” tukasnya.Kelompok tani ikan yang dibina semakin banyak, dengan harapan mampu memenuhi kebutuhan benih ikan di Bali. Termasuk unit pemeliharaan rakyat (UPR) yang merupakan bantuan Dinas Perikanan dan Kelautan Kabupaten Buleleng. Dari lahan 30 are, per bulan petani ikan mampu menghasilkan 10  ribu benih ikan nila.Sumber: Bisnis Bali ...
Genetics Influences Physical Fitness of Tilapia
Nila

Genetics Influences Physical Fitness of Tilapia

Wageningen University & Research scientists have demonstrated that genes influence swimming fitness of tilapia. As there are indications that fitter fish are also healthier and more resilient, the researchers recommend including fitness in selective breeding programmes for farmed fish. Nile tilapia is the second most cultivated fish species in the world after carp and provide cheap protein and essential micronutrients to populations in Africa and Asia for good nutrition, health and development.“In humans, cardiovascular fitness is typically measured through a cycling or treadmill test”, programme leader and personal professor Hans Komen says. “In farmed animals, this is rare. We have developed a methodology for fish. Our test shows for the first time that physical fitness, measured through this test, is largely inherited.”Swimming CarouselIn the study published in Scientific Reports, scientists have Nile tilapia swim against the flow in a carousel. By gradually increasing the flow, they are able to precisely measure when the fish reached their maximum swimming capacity. As in humans, their fitness depends on their ability to absorb oxygen and cardiovascular condition.Fast swimming fish showed slower growth. “We suspect this results from of an evolutionary principle’, says researcher Arjan Palstra. ‘To avoid predation, you can either swim faster to escape, or grow larger as a defense”.Read more: New Strains, New Gains for Nile Tilapia ProducersThere are also indications that fitter fish are healthier fish. The researchers therefore recommend that fish breeders include the swimming test in their selective breeding programmes. To date, the main focus has been increasing growth rate.Important Protein SourceSecond only to carp, Nile tilapia is the world's most cultivated fish and an important source of protein and essential micronutrients for good nutrition, health and development for many people. Particularly in Asia and Africa where small-scale farmers have cultivated them in cages and ponds for decades. In the past, fitness and resilience was not much of an issue, but with climate change accelerating, it is increasingly important to breed fish that can adapt to more stressful conditions.Read more: Ten Easy Steps Towards Biofloc Production of Shrimp or TilapiaKomen and his team intend to apply their results to other fish species such as trout, salmon and sea bream. As a result of climate change, the seawater temperature in Norway and the Mediterranean Sea is rising, affecting the physiology and fitness of fish cultivated in these regions. Source: Wageningen University & Research ...
Mengenal Jenis-Jenis Ikan Nila Unggul
Nila

Mengenal Jenis-Jenis Ikan Nila Unggul

Berikut ini adalah jenis-jenis ikan nila unggul hasil penelitian yang telah mendapat sertifikasi:1. Ikan Nila Best (Bogor Enhanched Strain Tilapia)Sumber: bibitikan.netIkan nila BEST merupakan ikan hasil pemuliaan menggunakan karakter keunggulan dalam pertumbuhan. Ikan ini dihasilkan melalui proses penelitian yang dilakukan Tim Peneliti Balai Riset Perikanan Budidaya Air Tawar Bogor dan telah dirilis oleh Menteri Kelautan dan Perikanan (Dr. Ir. Fadel Muhammad).Baca juga: Jadermawan Sinaga: Nila RAS ala Ibu RumahanIkan ini memiliki ketahan terhadap terhadap penyakit 140% lebih baik dari ikan yang ada di masyarakat. Fekunditas 3-5 kali dari ikan masyarakat, sintasan 84,4-93,3%. Angka itu lebih tinggi 8% dibandingkan nila lokal di karamba jaring apung. Pengujian terhadap ketahanan lingkungan yang dilakukan pada media bersalinitas menunjukkan bahwa ikan nila BEST dapat hidup dengan baik hingga salinitas 15 ppt.Pertumbuhan 2 kali lipat dari ikan yang ada di masyarakat. Pertumbuhan mencapai 300-500 g dalam waktu 4 bulan.2. Ikan Nila Srikandi(Salinity Resistant Improvement from Sukamandi)Sumber: bppisukamandi.kkp.go.idIkan nila Srikandi adalah ikan nila yang dihasilkan oleh Balai Penelitian Pemuliaan Ikan (BPPI) Sukamandi. Ikan ini telah dirilis oleh Menteri Kelautan dan Perikanan (Sharif C. Sutardjo) pada 2012. Ikan nila Srikandi (Oreochromis aureus x niloticus), menjadi solusi tepat untuk memanfaatkan lahan-lahan sub optimal di sepanjang pesisir tersebut. Selain toleransi yang tinggi terhadap lingkungan bersalinitas hingga ≤ 30 ppt, nila Srikandi mampu tumbuh cepat di perairan payau dan tahan terhadap penyakit.3. Ikan Nila Nirwana 2 (Nila Ras Wanayasa)Sumber: rahasiabelajar.comIkan nila Nirwana merupakan nila hasil pengembangan dari Balai Pengembangan Benih Ikan Wanayasa yang terletak di Purwakarta, Jawa Barat. Nirwana merupakan singkatan dari Nila Ras Wanayasa. Keunggulan nila Nirwana dibandingkan dengan nila biasa, yaitu pertumbuhannya yang cepat karena dalam waktu enam bulan dapat mencapai bobot 1 kilogram. Kemudian bentuk tubuh yang lebih lebar dan kepala lebih pendek serta struktur daging lebih tebal. Ikan nila nirwana 2 telah dirilis oleh Menteri Kelautan dan Perikanan pada 2012. Ikan nila nirwana 2 memiliki pertumbuhan 15% lebih tinggi dari generasi pertama. Pertumbuhan lebih tinggi dari nila lokal yang ada di masyarakat.4. Ikan Nila Gesit(Genetically Supermale Indonesian Tilapia)Sumber: khasiat.co.idIkan nila gesit dengan kromosom YY memiliki keunggulan, yakni 98-100 persen turunannya berkelamin jantan. Sedangkan keunggulan secara ekonomis yaitu nila gesit memiliki pertumbuhan yang cepat, yakni lima hingga enam bulan untuk mencapai berat 600 gram.Baca juga: Budidaya Ikan Nila di Kolam Air Deras5. Ikan Nila JatimbulanSumber: dictio.idIkan nila jenis ini merupakan hasil perekayasaan yang dilakukan oleh Unit Pelaksana Teknis PBAT Umbulan yang terletak di Pasuruan Jawa Timur. Keunggulan nila ini adalah pertumbuhannya yang lebih cepat dibandingkan dengan nila biasa dan struktur dagingnya yang lebih kenyal.6. Ikan Nila Larasati (Nila Merah Strain Janti)Sumber: bulelengkab.go.idIkan nila Larasati merupakan nila hasil perekayasaan oleh PBIAT Janti, Klaten. Ikan ini merupakan persilangan antara nila hitam dengan nila merah. Keunggulan nila Larasati yaitu pertumbuhannya seperti nila merah sedangkan reaksi pakannya seperti nila hitam, pemeliharaan lebih cepat, dagingnya lebih banyak dan kelangsungan hidup tinggi. Sumber: diskan.kutaibaratkab.go.id ...
5 Diseases Caused by Bacteria on Tilapia, Red Tilapia
Nila

5 Diseases Caused by Bacteria on Tilapia, Red Tilapia

Tilapia (tilapia) has many causes, but in the framework of this article, we focus on presenting 5 common diseases occurring in tilapia related to bacteria.MAS (Motile Aeromonas Septicaemia) syndromeMAS syndrome caused by Aeromonas hydrophila and related species. This is a heterotrophic, rod-shaped, Gram-negative bacterium mainly found in warm climates. Aeromonas hydrophila is also known as "cannibal bacteria".Infected fish show an imbalanced swimming pattern; lethargic swimming; breathing on the surface of the water; hemorrhagic or inflamed skin and fins; goggle; opaque cornea; a swollen abdomen with cloudy or bloody liquid; low daily mortality.Tilapia infected manifested abdominal swelling, hemorrhage.Treatment: Disinfect pond with KMnO 4 at 2-4 mg / liter or bath diseased fish in 4-10 mg / liter for 1 hour; antibiotics can be used for treatment, but professional consultation is required.Also read: New Strains, New Gains For Nile Tilapia ProducersVibriosisVibrio anguillarum and other species. Gram-negative bacteria with curved rods. Vibrio is a common bacterium and is causing serious harm to the aquaculture and fishing industries.Fibrillation has symptoms similar to MAS syndrome; The disease has been reported with environmental fluctuations such as poor water quality or herd stress.Treatment: According to published studies, the best solution to treat tremor in tilapia is to use antibiotics in food. However, we strongly recommend that, consult an expert on the use of antibiotics for the best effect.Columnaris DiseaseThe disease is caused by the bacteria Flavobacterium columnare , a Gram-negative rod-like bacteria of the genus Flavobacterium . This name is derived from the way in which this type develops in the "rhizome" column formation. This bacterium is also considered to be an important pathogen in tilapia farming.Fish infected with the bacteria exhibit frayed fins and / or irregular white to gray patches on the skin and / or fins; lesions, pale color, necrosis on gills.A) Infected fish have an ulcerated and hemorrhagic outer surface (1) and an eroded tail fin (2). B) Infected fish show pale gills (3). C) Infected fish have hardened body and eroded tail fins (2). D) Normal tilapiaTreatment: It is possible to use antiseptic by KMnO 4 as with MAS syndrome; or use CuSO 4 at 0.5-3 mg / liter, depending on the alkalinity of the pond.Also read: Streptococcus Vaccine Offers Hope for Tilapia SectorEdwardsiellosisEdwardsiella tarda bacteria are the main cause of the disease. This is arbitrary, small, easy to move anaerobic, gram-negative, straight rod-shaped.Infected tilapia have few external symptoms; bleeding, or blood fluid in the body cavity; pale, speckled liver; swelling, dark red spleen; tender, swollen kidneys.Infected red snapper exhibits dark red spleen, swollen liver, and white spots appearTreatment: Consider when using antibiotics in fish food when sick. It is also important to pay attention to the amount of antibiotics used and the length of time fish are stored in the pond before commercial sale.Also read: The Bacterium that's Battling Streptococcus in TilapiaThe disease is caused by streptococciThe causative agent includes 2 main species of the disease, Streptococcus iniae and Enterococcus sp. is a Gram-positive bacteria invading and causing disease in tilapia parents and tilapia from 50 - 300g. The suitable temperature for streptococcal disease on tilapia grows from 25 - 35 0 C, which thrives most when the water temperature is above 30 0 C. Ponds with a high mortality rate of fish are umbrella ponds. Contaminated and rich in organic matter, mortality can be as high as 80% in a short time, however, when the temperature is low, the mortality rate will decrease.Infected fish show comatose manifestations, erratic swimming; melasma, darkening of the skin; one side bulging ankle and a milky film above the eye; bloating; intestinal bleeding, around the mouth, anus, and fins; enlarged spleen, almost black; high mortality.Treatment: Antibiotics can be used in food under consultation and supervision from a specialist. The recommended dose of Erythromycin is 50mg / kg fish / day for 12 days. Source: Tepbac.com ...
Pakan Efisien, Budidaya Nila Konsisten
Nila

Pakan Efisien, Budidaya Nila Konsisten

Budidaya ikan di Kecamatan Sumberjaya, Kabupaten Lampung Barat, Provinsi Lampung mulai dikelola oleh generasi kedua yang berlatar belakang pendidikan tinggi. Dampak positifnya, dalam menjalankan budidaya mereka lebih selektif dalam memilih benih dan pakan serta melakukan hitung-hitungan secara matematis sehingga budidaya lebih efisien. Satu pembudidaya generasi kedua yang mulai berkiprah di bidang budidaya ikan di punggung Bukit Barisan Selatan ini adalah Elva Edison. Saat ini Elva mengelola ikan nila pada tiga 3 kolam seluas setengah hektar (ha).  Untuk benih, Elva menggunakan benih nila strain gesit. “Untuk benih ikan nila, Sumberjaya sudah swasembada bahkan sudah surplus. Namun persoalannya produksi benih dari UPR (Unit Pembenihan Rakyat) belum tentu kualitas A dan B. Oleh sebab itu kita harus betul-betul sleektif dalam memilih benih mengingat benih merupakan salah satu faktor kunci keberhasilan budidaya,” ujar sarjana psikologi STKIP PGRI Bandarlampung ini. Baca juga: Ukuran Pelet Tepat, Produksi Benih Nila Maksimal Budidaya Efisien PakanDalam berbudidaya, Elva mengakui harus cermat dalam menerapkan manajemen pakan. Untuk itulah, dia pun sebisa mungkin mengaplikasikan pakan yang sesuai dengan targetnya untuk mencapai rasio konversi pakan (FCR) paling rendah. Sejauh ini, akunya, FCR rata-rata budidaya nila yang ia terapkan berkisar 1,25-1,3.  Dengan penerapan manajemen pakan yang baik; ia mengaku bisa mendapat keuntungan usaha yang lebih baik. Manajemen pakan ini, ia mulai dari pemilihan pakan yang cocok hingga aplikasi pola pemberian pakan.  Tidak itu saja, untuk laju sintasan pun ia mengaku terbantu dengan pemilihan pakan yang sesuai. Pakan yang sesuai, ungkapnya, telah memberikan hasil cukup memuaskan bagi usaha budidayanya.  Beli pakan ikan nila disini!Saat ini, SR nila nya menjadi di atas 60 % dengan kepadatan tebar tetap rata-rata 10 ekor per meter kubik (m3) . Menurut Elva, naiknya SR mendongkrak keuntungan karena hasil panen meningkat. “Dengan pemilihan dan penerapan yang baik, budidaya pun baik,” ujar putra pertama dari tiga bersaudara dari pasangan Cucu Marsudi dengan Siti Jubaidah ini. Lebih jauh, ia mencontohkan dengan pemilihan pakan yang sesuai dengan pola budidayanya. Yaitu, ia memilih jenis pakan yang kandungan lemaknya rendah dan menyatu dengan pakan, sehingga termakan oleh ikan. “Kadang, kalau pakan dengan kandungan lemaknya lemaknya lebih tinggi dan berada pada bagian luar sehingga ketika ditebar ke kolam langsung menyebar sehingga merusak kualitas air,” Elva bercerita dari pengalaman. Ia menyebut, kandungan lemak pakan yang berada pada bagian luar pakan, aromanya lebih kuat sehingga pembudidaya menganggap lebih baik. Padahal, menurutnya ini justru merugikan karena terbuang ke air dan tidak termakan oleh ikan.  Baca juga: Budidaya Ikan Nila di Kolam Air DerasBagi keluarga Elva yang juga merupakan pedagang ikan sangat menguntungkan menggunakan pakan yang rendah lemak. Pasalnya, bobot ikan lebih stabil sehingga  nilai susut ikan rendah ketika dikirim ke pasar lebih kecil. Saat ini penjualan ikannya per hari yang dikirim ke Palembang, Sumsel dan Menggala, Kabupaten Tulangbawang, Lampung.   Untuk ukuran panen, Elva mengaku tergantung permintaan pasar. Untuk pasar Palembang, dikirim ikan ukuran 4-5-6 ekor per kg. Sementara untuk pasar Menggala, Kabupaten Tulangbawang diperlukan ikan yang lebih besar yakni ukuran 2, 3 dan 4 ekor per kg. Artikel asli ...
Gunakan Kincir, Profit Nila pun Mengalir
Nila

Gunakan Kincir, Profit Nila pun Mengalir

Biaya operasional akan ikut meningkat, tapi hal itu bisa dimaklumi dengan profit yang meningkat berkali lipatPenggunaan kincir sebagai alat bantu untuk meningkatkan kadar oksigen dalam air atau DO (dissolved oxygen), selama ini lumrah ditemui pada budidaya udang intensif dengan kepadatan tinggi. Sedangkan pada budidaya ikan air tawar, penggunaan kincir masih jarang ditemui. Padahal, penerapan teknologi itu bisa meningkatkan produktivitas sekaligus keuntungan hingga beberapa kali lipat. Hal ini disampaikan Imanuel Dwi Kanta Nugraha, pembudidaya ikan nila asal Klaten –Jawa Tengah pada acara Aquabinar ke-9 beberapa waktu lalu. Menurutnya, penggunaan kincir pada kolam ikan nila, selain bisa meningkatkan kepadatan ikan di dalam kolam, juga bisa meningkatkan keuntungan 7 – 8 kali lipat. “Profitnya menjanjikan jika menggunakan kincir,” ungkap pria yang biasa disapa Nuel ini.  Baca juga: KKP: Budidaya Ikan Nila dengan Kincir Tingkatkan ProduktivitiasPeningkatan Produktivitas   Dalam acara yang diadakan oleh TROBOS Aqua itu, Nuel membandingkan bagaimana performa kegiatan budidayanya sebelum dan setelah menggunakan kincir. Seperti sudah jamak diketahui oleh para pembudidaya, kelarutan oksigen di dalam air merupakan faktor pembatas dalam budidaya. Jika kadar oksigen bisa ditingkatkan, maka produktivitas budidaya juga bisa ikut meningkat. Hal itulah yang dilakukan oleh Nuel pada kegiatan budidayanya dalam beberapa tahun terakhir ini.  Ia merasa budidaya yang dilakukann tanpa menggunakan kincir kurang begitu menuntungkan. Apalagi saat dilakukan pada lahan yang terbatas. Menurut Nuel, pada kolam ukuran 200 meter persegi (m2), ia bisa menebar bibit ikan nila Larasati ukuran 8 – 10 cm (20 gram) sebanyak 2 kuintal atau 12 – 13 ribu ekor. Sementara jika tidak menggunakan kincir, biomassa tebar yang bisa dilakukan hanya 50 kg.  Dengan perbedaan jumlah padat tebar yang signifikan itu, volume hasil panen juga berbeda cukup jauh. Pada sistem budidaya ekstensif tanpa penggunaan kincir, jumlah panen yang didapat oleh Nuel sekitar 5 kuintal saja. Sementara setelah menggunakan kincir, panennya meningkat hingga mencapai 2,2 ton. Pada kolam kecil ukuran 200 m2 itu, kincir yang digunakan cukup jenis mini-pad saja dengan daya 375 Watt. Menurutnya, kincir dengan kapasitas tersebut sudah optimal digunakan di kolamnya. “Jika ukuran kolam lebih besar, maka kincir yang digunakan juga memerlukan tenaga yang lebih besar lagi. Atau menggunakan lebih dari dua kincir mini-pad,” ujar pemuda yang juga menjadi Penyuluh Perikanan Bantu (PPB) ini. Baca juga: KKP Ciptakan Inovasi Kincir Air Tambak Hemat Energi Berbahan Baku Lokal & Ramah LingkunganSelain bisa meningkatkan produktivitas kolam, penggunaan kincir pada budidaya ikan nila juga bisa memangkas waktu budidaya. Jika tidak menggunakan kincir, lama budidaya dari ukuran 50 gram hingga mencapai 250 gram atau lebih membutuhkan waktu 5 – 6 bulan. Sementara jika menggunakan kincir, waktunya lebih singkat jadi 4 – 4,5 bulan saja. “Dengan kadar oksigen yang cukup yang disuplai kincir, pertumbuhan ikan menjadi lebih cepat,” ungkapnya beralasan. Namun meski bisa meningkatkan produktivitas dan keuntungan, penggunaan kincir, seperti penggunaan teknologi pada umumnya memerlukan biaya yang lebih besar. Baik biaya investasi maupun operasionalnya. Semula biaya operasional yang tidak mencapai Rp 10 juta untuk luas kolam 200 m2 itu, bisa meningkat 4 kali lipat, atau hampir mencapai Rp 40 juta setelah menggunakan kincir. Namun demikian, tentu saja keuntungan yang didapat juga meningkat. Artikel asli ...
Enhanced Biodiversity of Gut Flora, Feed Efficiency in Nile Tilapia Under Reduced-frequency Feeding
Nila

Enhanced Biodiversity of Gut Flora, Feed Efficiency in Nile Tilapia Under Reduced-frequency Feeding

Tilapia and many other fish species are grown predominantly in pond culture under various conditions. These include intensive culture, with high stocking densities, reliance on commercial feeds, and often requiring mechanical aeration of the ponds; extensive culture, where fish are stocked at low densities and organic and inorganic fertilizers stimulate pond primary food production with little to no additional feed supplementation; and, most frequently, semi-intensive culture conditions in which fish are stocked at moderate densities and provided supplemental feeds to complement microorganisms produced naturally with pond fertilization, which can effectively quadruple production over extensive culture systems.Feed is a major expense in aquaculture, comprising up to 50 to 70 percent of the total production costs for cultured tilapia. Methods to limit the amount of feed can help reduce overall costs to producers and has major impacts on small-scale farmers that dominate in underdeveloped countries. Reductions in feed ration by up to 50 percent by using alternate-day feeding improves the feed efficiency and economic returns of tilapia monocultured at densities of 2 to 4 fish per square meter with little impact on growth, survival or production yield.A better understanding of how finfish acquire and utilize nutrient inputs is required to improve aquaculture production efficiency. The underlying mechanism explaining how reduced frequency or alternate-day feeding strategies can achieve equivalent production yields with less feed is poorly understood in finfish. Also read: Prevention and Treatment Of Streptococcal Disease in TilapiaSome evidence suggests that during periods of fasting, nutrient uptake efficiency in the intestine is intrinsically enhanced, leading to a more-efficient uptake of nutrients at the next feeding periodAdditionally, reduced feeding may promote foraging on primary food production within the ponds, leading to a more diverse diet (e.g. algae, insect larvae, plankton), enhancing nutrient recycling within the ponds. This enhanced diversity may directly influence intestinal absorption by promoting colonization and growth of microbes that may aid in nutrient utilization and uptake efficiency that are key to growth and health of the fish.It is currently unknown as to how reduced frequency feeding strategies may alter the gastrointestinal microbiome and nutrient transporter gene expression of tilapia resulting in better nutrient utilization and feed efficiencies. This article – adapted and summarized from the original publication (Salger, S.A. et al. 2020. Enhanced biodiversity of gut flora and feed efficiency in pond cultured tilapia under reduced frequency feeding strategies) – reports on a study that evaluated potential underlying mechanisms behind the greater feed efficiency in fish fed on alternate days.Study setupIn this study, we evaluated the practices of alternate-day feeding to both establish whether this practice is effective in other areas of the world and to determine if changes in the tilapia gastrointestinal microbiome and nutrient transporter gene expression might account for improved feed efficiency under the management practice. We also sought to assess if reducing the frequency further to every third day might further improve production efficiency of tilapia.The tilapia growth trial was carried out at the Fisheries Field Laboratory, Bangladesh Agricultural University, Mymensingh, Bangladesh. All-male sex reversed Nile tilapia (~3.5 grams) were stocked at five fish per square meter in 16 ponds (0.1 hectares; four replicates per treatment), with weekly pond fertilization at a rate of 28 kg of nitrogen and 7 kg of phosphorus per ha per week for all treatment groups.Twenty ponds were randomly divided into one of five treatments (four ponds per treatment). The treatments were: (T1) commercial diet feeding daily with weekly pond fertilization, (T2) commercial diet feeding every other day with weekly pond fertilization, (T3) commercial diet feeding every third day with weekly pond fertilization, (T4) weekly pond fertilization with no supplemental feeding of commercial diet and (T5) daily feeding with commercial diet with no pond fertilization. Fish were fed with a local, commercial formulated feed (CP Bangladesh, 30 percent crude protein), initially at 10 percent and then down to 3 percent body weight per day based on a standard tilapia feed schedule.Also read: Study Tests Autogenous Vaccine to Protect Nile TilapiaGrowth (length and weight) was monitored at two-week intervals by subsampling of fish over the 12-week growing trial. Feed rates were adjusted accordingly based on this biweekly random sampling of 50 tilapia from each pond. After approximately 12 weeks (day 114 of the trial), all fish were harvested by seining the fish from the ponds. All fish were collected, counted, weighed and measured to assess survival rate and total production. Samples of tilapia anterior intestinal tissue and fecal material from the colon were collected for various analyses at North Carolina State University, Raleigh, N.C., USA.For detailed information on the experimental design and fish husbandry; water quality; collection of various fish production data and samples and their analyses; and statistical analyses, refer to the original publication.Results and discussionOur results showed no difference in growth parameters or survival in tilapia fed on alternate days versus those fed daily. Nile tilapia fed on alternate days had improved feed efficiency and a greater diversity of gut prokaryotic [cellular organism that lacks an envelope-enclosed nucleus] and eukaryotic [organisms whose cells have a nucleus enclosed within a nuclear envelope] microorganisms, while transcript levels of select nutrient transporters changed little in fish fed on alternate days versus those fed daily, every third day or not at all.It is estimated that 50 to 70 percent of total variable costs for growing tilapia and many other fishes is attributable to formulated feeds. Our study demonstrated that alternate-day feeding along with pond fertilization reduces the costs of feeds for growout of Nile tilapia by 50 percent, increases feed efficiency by 76 percent and has little impact on growth, survival or yield of fish farmed in ponds. This is noteworthy as both ponds fed every day with (T1) or without (T5) pond fertilization had the highest expenditures in our study while ponds that were fertilized only (T4) with only pond fertilization had the lowest cost input. Tilapia producers could see a marked reduction in production costs and the highest benefit: cost ratio (BCR) largely due to the reduced feed costs associated with alternate-day feeding strategies.The overall improved capacity of fish fed on alternate days to utilize nutrients for growth (lower feed conversion ratio, FCR) was accompanied by other factors including intermediate expression of some genes and high diversity of gastrointestinal prokaryotes and eukaryotes, suggesting that these factors along with the higher biodiversity of organisms available for consumption (commercial diet and natural pond productivity) may contribute to enhanced feed efficiency while sustaining similar growth and health of tilapia when fed daily.We also assessed how the gut microbial flora is altered by feeding and fertilization strategies that could potentially identify microbes beneficial to tilapia growth and health. The establishment of beneficial gut flora to increase nutrient absorption is an emerging research focus in human biology and aquaculture science and may serve to augment existing practices of sustainable feeding and reduction in environmental footprint.Also read: Can Natural Male Tilapia Tackle Emerging Diseases?The most abundant phylum of prokaryotes identified in all treatments were the Firmicutes, important members of the gut microbiome of many vertebrates. The proportions of Firmicutes identified declined with reduced application rates of commercial feed in fertilized ponds. An increase in the relative abundance of Firmicutes is positively correlated with caloric intake in bony fishes. The higher proportion of Firmicute bacteria in tilapia from treatments fed daily in fertilized ponds in our study indicates that there may be an abundance of high-calorie food sources available to these fish. Bacteria from Fusobacteriaceae and Clostridiaceae were most abundant in the fecal material of Nile tilapia used in our study.The highest growth and survival rates were observed in T1 (daily feeding along with pond fertilization), T2 (alternate day feeding along with pond fertilization) and T5 (daily feeding only). We identified seven operational taxonomic units, OTUs [an operational definition used to classify groups of closely related individuals], including those of Acutodesmus sp., Cyanobacterium sp., Bacillus sp., Blautia sp., Anaerovorax sp., Sphingomonas sp. and Desulfococcus sp.) that were common between all three of these treatments. The identification of the species relating to these OTUs are currently unknown. Future work will be necessary to determine not only the species but also the exact functions of these microorganisms and to determine whether they might serve to benefit growth of Nile tilapia.Six families of eukaryotic phytoplankton and four groups of zooplankton were identified from the ponds in this study. Of those identified, plankton from the families Bacillariophyceae, Chlorophyceae, Euglenophyceae, Rhodophyceae, Subphylum Crustacea and Phylum Rotifera were also identified in the microbial communities in the fecal material from the Nile tilapia in these studies. The commonalities with fecal matter data indicate that the tilapia were consuming plankton from the pond as an additional food source.Tilapia in this study were feeding on a wide variety of eukaryotic organisms in the ponds. Being omnivores, tilapia will utilize any food resources available to them for growth and as such a decrease in the application frequency of the commercial feed would likely increase the rates of consumption of natural food sources, whether that be planktonic sources or plant material growing in the ponds. Also read: Tilapia Pass Benefits of Streptococcus Vaccine to Their OffspringTilapia in T2 (alternate day feeding along with pond fertilization) had the greatest diversity of eukaryotic organisms identified in their guts. This could have led to a greater variety of nutrients available to them for growth than the tilapia in the other treatment groups.It is likely that pond fertilization alone is beneficial for growing tilapia as it increases the availability of natural food sources providing a more varied diet. Alternate day feeding appears to also be beneficial for enhancing microbe diversity as these fish are likely consuming a greater proportion of plankton and plant materials than those fed daily.Our results suggest that the optimal BCR and net return for tilapia production occurs when fish are fed on alternate days in fertilized ponds. Tilapias are omnivorous and readily feed on diverse food sources throughout their life, including phytoplankton and zooplankton or other natural pond foods enhanced through fertilization or application of supplemental formulated feeds. Hence, tilapia fed on alternate or even every third day likely forage at a greater rate between meals on pond organisms produced through enhanced nitrogen and phosphorous inputs from fertilizers or feeds than fish fed daily. Less reliance on supplemental feeds will increase overall feed efficiency as demonstrated here with low FCR, albeit at a detriment to growth when animals are fed at a frequency of every three days.PerspectivesIt is estimated that formulated aquafeeds are 50 to 70 percent of the total variable costs for growing tilapia. Results of our study demonstrated that alternate-day feeding reduces the costs of feeds for grow-out of tilapia by 50 percent, increases feed efficiency by almost 76 percent, and has little impact on growth, survival or yield of tilapia farmed in ponds.The results also suggest that tilapia grown in fertilized ponds without supplemental feeds may be nutritionally impaired, as key nutrient transporters in the gut are enhanced in preparation for increased uptake of solutes should food become available, a process that is mitigated when animals are provided supplemental aquafeeds. The intermediate expression of gut nutrient transporters in alternate-day fed tilapia may reflect a condition for the most efficient uptake of nutrients from the GI tract.Our research shows that the use of fertilizers and the implementation of an alternate-day feeding strategy increase the diversity of intestinal microbiota that may function in promoting nutrient assimilation in tilapia. These microbes may serve as promising candidates for isolation and development of probiotics beneficial to increased feed efficiency, growth and health in tilapia.Overall, this is the first study to suggest that enhanced gut microbial diversity may contribute to improved feed utilization under reduced frequency feeding strategies in the culture of Nile tilapia and perhaps other finfish. Source: Global Aquaculture Alliance ...
Ukuran Pelet Tepat, Produksi Benih Nila Maksimal
Nila

Ukuran Pelet Tepat, Produksi Benih Nila Maksimal

Pemilihan ukuran pelet yang baik dan benar agar produksi benih ikan nila lebih efisien dan maksimal Pakan merupakan faktor yang berperan penting dalam usaha budidaya. Biaya pakan menjadi kendala tersendiri bagi pembudidaya dalam setiap usaha budidaya, baik itu skala petani maupun industri.  Kebutuhan pakan bergantung dari harga dan ketersediaan stok pakan yang ada di pasaran. Hal tersebut berlaku juga dalam budidaya ikan. Jika harga pakan mahal, maka ikan diberi pakan se-efisien mungkin. Akan tetapi, ketika harga pakan dalam kondisi terjangkau, maka sebagian orang akan memberikan pakan secara berlebihan.  Hal tersebut dilakukan untuk mengejar laju pertumbuhan ikan yang lebih cepat, sehingga perputaran modal akan lebih cepat pula. Pada tahap inilah pentingnya wawasan tentang manajemen pakan, salah satunya yaitu penggunaan ukuran pelet yang tepat agar waktu laju pertumbuhan ikan tercapai sesuai target dan pembiayaan tetap efisien.   Benih ikan nila terkadang sudah ada yang dikomersilkan saat tahap swim-up fry atau biasa disebut dengan ‘larva kebul’ (istilah Jawa). Pada tahap ini, sebagian benih ikan nila terkadang masih ditemukan sisa kuning telur di perutnya sehingga belum membutuhkan pakan dari luar.  Setelah kuning telur habis, benih ikan secara perlahan akan mulai mencoba mengenali pakan alami yang ada di perairan. Selain itu, benih nila di pasaran juga sudah mulai dikomersilkan berdasarkan kategori panjang tubuh ikan, mulai dari 2 - 5 cm tergantung permintaan dan ketersediaannya.   Baca juga: Budidaya Ikan Nila di Kolam Tanah Bagi PemulaBenih - benih tersebut nantinya akan masuk ke tahap pendederan sampai ukuran fingerlings (sebesar jari), biasa disebut ‘glondong’ (istilah Jawa) dan selanjutnya dipasarkan untuk pembesaran. Tahap pembenihan membutuhkan kuantitas pakan lebih kecil dibandingkan pada tahap pembesaran, namun membutuhkan asupan protein lebih banyak dibandingkan tahap pembesaran. Kebutuhan nutrisi pakan ikan berbeda - beda pada setiap tahapnya. Pada tahap pembenihan akan membutuhkan lebih banyak protein. Berdasarkan protokol FAO (Organisasi Pangan Dunia) bahwa ikan nila tahap pembenihan membutuhkan pakan dengan protein jauh lebih tinggi yang disajikan dalam tabel. Data tersebut bisa menjadi dasar para pembudidaya ikan nila di tahap pembenihan untuk memberi pakan tinggi protein. Protein yang tinggi diharapkan mampu mengejar laju pertumbuhan ikan nila. Banyak perusahaan dibidang pakan ikan yang saling berlomba dalam hal komposisi dan sumber protein dalam pakannya.  Selain itu perusahaan - perusahaan tersebut juga menawarkan berbagai variasi ukuran sesuai dengan umur ikan. Fakta di lapangan bahwa pakan yang tinggi protein memiliki harga yang lebih tinggi. Sehingga daya beli pembudidaya akan mempertimbangkan faktor ekonomi dan mengesampingkan komposisi protein pakan.   Sebagian pembudidaya akan menyiasati pemberian pakan dengan pakan yang lebih terjangkau. Secara otomatis akan melirik pakan berprotein sedikit lebih rendah, dampaknya ukuran pakan ikan yang lebih besar dipilih karena pakan dengan protein rendah biasanya untuk pakan ikan ukuran besar. Pada tahap pembenihan biasanya benih ikan nila akan menjadi rakus, sehingga pemberian pakan dalam jumlah banyak akan cepat habis.  Baca juga: Budidaya Ikan Nila di Kolam Air DerasMengutip dari Smith (2019) dalam Kusumawati dan Ismi (2014) bahwa ketika individu ikan memberikan respon yang cukup tinggi terhadap pakan, maka akan meningkatkan kuantitas pakan yang dikonsumsi dan hal tersebut akan memperlambat laju cerna pada ikan. Cara pemberian pakan sekaligus penggunaan jenis ukuran yang salah akan menimbulkan masalah bagi ikan dan berujung banyaknya ikan yang mati.  Masalah yang muncul bisa berupa lambatnya laju cerna ikan akibat terlalu banyak pakan yang dikonsumsi dan pakan yang tersisa diperairan juga dapat menimbulkan masalah tersendiri terhadap lingkungan perairan ikan. Pakan pabrikan saat ini sudah disesuaikan dengan bentuk mulut ikan dan lebar bukaan mulut ikan. Terlihat pada gambar bahwa ukuran 1 mm sudah dapat dimakan oleh ikan dengan ukuran panjang 3 cm. Selain itu, terlihat pakan kering juga mengalami penambahan volume akibat basah terisi air. Oleh karena itu, apabila pembudidaya tidak jeli dalam memilih dan memberikan pakan tersebut akan berakibat fatal. Sebagian pembudidaya biasanya melakukan pemberikan pakan dengan ukuran lebih besar dibanding bukaan mulut ikan. Hal tersebut dikarenakan benih ikan terkadang dianggap sudah cukup mampu menelan pakan apung tersebut.  Apabila tidak tertelan, pembudidaya akan berpikir bahwa ikan akan mencoba memakannya sedikit demi sedikit. Namun, jika pakan tersebut ternyata mampu ditelan dalam sekali lahap dan ikan memakannya dalam jumlah banyak maka akan berdampak buruk di lambung ikan. Hal yang perlu diperhatikan bahwa pakan apung yang diberikan biasanya dalam kondisi kering dan keras. Pada kondisi tersebut ikan biasanya juga agresif untuk makan sebanyak - banyaknya.  Kondisi pakan kering yang tertelan dalam jumlah banyak oleh benih ikan akan masuk ke lambung ikan tanpa disertai proses mekanis dimulut. Pakan yang berada dilambung akan bercampur dengan air dan zat pencerna. Hal ini akan menyebabkan pakan mengembang. Dimana ukuran pakan yang awalnya kering sedikit bertambah setelah ditambahkan air. Apabila ikan makan dalam jumlah banyak maka lambung ikan pun akan penuh dan perut terlihat membuncit seketika. Baca juga: Pembenihan Ikan Nila Merah dalam Waduk Kondisi bagian perut yang membuncit pada ikan sering dikenal dengan beberapa kelainan, diantaranya dropsy/ascites, bloat, dan water belly. Namun, kondisi kelainan tersebut bersifat kronis, tidak  serentak pada semua ikan.  Gejala klinis akibat pakan yang mengembang di dalam perut juga akan terlihat hampir sama. Namun, perbedaan nya akan terlihat serentak hampir pada semua ikan. Gejala klinis bisa dibilang serentak karena biasanya dalam satu kolam pembenihan, benih ikan memiliki ukuran seragam. Sehingga jika terdapat ikan yang megalami kelebihan pakan kering dalam lambung, maka hampir semua dalam kolam tersebut kurang lebih akan mengalami hal yang sama.  Apabila kapasitas lambung ikan masih terdapat ruang kosong maka tidak akan menimbulkan efek pada ikan. Hal berbeda, apabila  kapasitas lambung lebih kecil atau sama dengan ukuran pakan kering yang telah masuk. Oleh karena itu, perlu nya mengetahui jenis ukuran pellet yang sesuai dengan ukuran ikan. Pakan apung kering yang secara utuh masuk ke dalam lambung tidak mengalami proses pencernaan secara mekanis di dalam mulut. Lambung akan menjadi proses pencernaan yang dibutuhkan hanya secara kimiawi. Komposisi pakan ikan diantaranya memiliki serat, lemak, karbohidrat dan protein. Proses pencernaan ini melibatkan beberapa enzim pencernaan yang dapat mencerna komposisi pakan tersebut. Berdasarkan Kusumawati dan Ismi (2014) bahwa tingkat kepenuhan isi lambung dan ikan dianggap sudah kenyang apabila lambung sudah terisi ±80% oleh pakan. Sehingga masih ada ruang sisa untuk proses digesti ataupun kemungkinan pakan yang mengembang. Namun, apabila benih ikan nila sudah memakan pakan kering ukuran besar yang masih utuh maka ruang lambung kemungkinan terisi mendekati 100%. Akibatnya, tidak ada ruang lagi ketika pakan sudah mulai mengembang atau dimulainya proses pencernaan. Lambung yang mengembang akan mendesak organ-organ lain yang berada di sekitarnya dan menggangu proses metabolisme. Hal ini lah yang menjadi permasalahan ketika ukuran pellet tidak sesuai dengan kapasitas lambung.   Baca juga: Cara Mudah Memilih Bibit dan Indukan Ikan NilaOleh sebagian pembudidaya yang sudah paham dengan kondisi pakan ukuran besar, akan menyiasati lagi dengan beberapa cara, diantaranya membasahi pakan sebelum diberikan ke umpan atau menggiling pakan tersebut. Membasahi pakan diharapkan dapat melunakan pakan terlebih dahulu sehingga ikan akan memakannya sedikit demi sedikit.  Namun, terdapat kekurangan dalam penggunaan pakan basah. Pakan basah harus langsung diberikan dan tidak disimpan dalam jangka waktu yang lama. Hal tersebut, dikarenakan pakan basah akan menjadi media berbiaknya jamur yang bisa menimbulkan masalah lain pada benih ikan.  Sedangkan menggiling pakan menjadi ukuran yang lebih kecil akan membuat butiran pakan menjadi lebih kecil atau di sebut mash (tepung). Butiran yang lebih kecil tersebut akan mengurangi beban lambung, sehingga ikan sudah merasa kenyang pada tingkat sekitar 80%.  Namun, terdapat konsekuensi dalam penggunaan ukuran pakan yang digiling, yaitu ketersediaan protein yang tidak sesuai dalam tahap pembenihan. Ketidaksesuaian penggilingan pakan dikarenakan kebutuhan protein tidak sesuai dan komposisi proteinnya tidak merata.  Selain itu, aplikasi pemberian mash juga harus dipertimbangkan. Mash memiliki bobot yang ringan akan mudah tertiup angin, sehingga sebisa mungkin pemberian lebih dekat dengan permukaan air dan ikan agar pakan tidak terbuang percuma karena tidak termakan oleh ikan. Disamping itu, benih ikan yang mengejar pakan tertiup angin dalam bentuk mash juga akan menguras energi sehingga tidak ada energi tersimpan dalam tubuh ikan.  Cara penggunaan pakan yang lebih besar diharapkan hanya digunakan saat mendesak dengan pertimbangan yang tepat. Oleh karena itu, manajemen pemilihan ukuran pellet yang baik dan benar perlu diterapkan agar mendapatkan produksi benih ikan nila yang efisien dan maksimal. Artikel asli ...
Prevention and Treatment Of Streptococcal Disease in Tilapia
Nila

Prevention and Treatment Of Streptococcal Disease in Tilapia

ReasonStreptococcal disease is caused by Streptococcus iniae bacteria and Streptococcus agalactiae is a Gram-positive bacteria.Disease often occurs when farmed fish are exposed to stresses such as increased water temperature, oxygen levels in the water below allowable levels or fish are kept at high densities for long periods of time. Fish that are large in size (from 100 g to commercial size) are most susceptible to disease. The disease is in an acute stage with a peak death in the range 2-3 weeks when the water temperature is high. However, the disease can also be in a chronic stage when low water temperature can reduce mortality. The disease spreads horizontally from fish to each other (healthy fish eat sick fish, eat each other due to skin wounds ...) and can also spread from the environment to the fish.Signs of illnessBecause the pathogenic bacteria tend to attack the central nervous system of the fish, the diseased fish will appear lethargic and disoriented. Fish swim lethargic on the surface, some seriously sick fish swim on the surface and spin around and then die. The ankle is protruding on one side and the eye pulls a milky film. The inside of the gill cover is hemorrhagic, red but not rotten.Anatomy in the abdominal sinuses contains a lot of fluid, intestinal bleeding and contains air bubbles. The presence of fluid in the fish's abdomen is a sign of an acute epidemic. This fluid can be seen flowing from the fish's anus. During the acute phase of the disease the bacteria rapidly travel to the blood system and spread to all internal organs. The main clinical signs associated with blood infection are hemorrhage, hepatitis, kidney, spleen, heart, eye, and intestinal tract. The spleen is often enlarged (swollen and swollen slightly).In addition, when the fish is seriously infected, the disease also combines with other opportunistic bacteria that cause diseases of fish available in the environment such as bacteria Aeromonas spp in fresh water or Vibrio spp in brackish water.Preventive measuresAfter each culture cycle, it is necessary to comply with the process of improving the pond as follows: Drain the water, remove the sludge to only 10 - 15 cm; Apply lime evenly all over the pond 10 - 15 kg / 100 m 2 ; Dry pond bottom for 7 - 10 days; Water supply to the pond is 50-60 cm; Color the pond water before stocking.The water supply must be clean, the water must be through a fine filter net to avoid insects, trash fish and natural perch in the pond. Before bringing the fingerlings to the pond to bathe the fish in salt solution (NaCl) with the concentration of 2-3% for 7-10 minutes.    Environmental management of water: Every 2-3 weeks / time Air lime water pond with volume falls are 2-3 kg / 100 m 3 . Change water periodically every month about 30 - 50% of the water in the pond. Add a rain sprayer or a water fan to create oxygen for the pond. Using bio-products such as: EM, EMC helps the pond to stabilize water quality, improve the bottom, and limit the growth of harmful bacteria. The period of June and July every year is the time when streptococcal disease usually occurs on tilapia, so it is necessary to use BKC, TCCA to drop evenly all over the pond once a month to kill bacteria.Feed management: Feed the fish in accordance with 4-6% of the fish's weight and gradually decrease in the following months. Industrial feed must ensure food hygiene and safety; Not infected with Salmonela, Aspergillus flavus , Aflatoxin toxin, no antibiotics, banned chemicals. Periodically supplement Vitamin C to strengthen fish's resistance. In addition, regularly observe the water level in the pond to adjust enough according to regulations. When the fish reaches 300 g / fish, it is necessary to maintain the amount of dissolved oxygen> 3 mg / l. Track the weather, the activity of the fish to adjust the amount of food accordingly.TreatmentWhen streptococcal disease appears on tilapia, the following treatment regimen should be followed:Reduced feeding: During an outbreak in an acute phase, partial food reductions or a complete reduction in feed can help control and reduce mortality. One of the explanations for this is that bacteria are present in water and favorably enter the body by food.Decreasing stocking density: As mortality increases, the reduction in stocking will help reduce the stress and transfer of pathogens in the fish population. Always keep dissolved oxygen at optimum levels by using frequent water fans.Reduce the water temperature : When the water temperature is high, it creates stress for the fish and is a favorable condition for bacteria to grow. Therefore, lowering the water temperature can be done in recirculating water systems where the water temperature is controlled. For small ponds, you can use a shade net to reduce the water temperature. Using a water blower at night is also a way to reduce the water temperature and increase the amount of oxygen.Treatment with antibiotics: Feeding the fish with Doxycycline antibiotic (100%) 4 g / 100 kg of fish for 5 consecutive days and combined with Vitamin C 2 - 4 g / 100 kg of fish; at the same time treat the environment by TCCA or BKC according to the instructions. Dissolve the drug and Vitamin C in water and then splash it evenly on industrial food to drain the food before feeding the fish.Note: Antibiotics can only treat diseases in the early stages of the disease (newly sick), but the use of antibiotics should be paid attention because continuous use of antibiotics with high doses will gradually cause phenomena. resistance of bacteria and affecting antibiotic residues in fish meat.Streptococcal disease in tilapia relationship intimate with high water temperature (thrive best when water temperatures over 30 ° C) the quality of the culture water less, the disease occurs in the summer in June and July.Source: Tepbac.com ...
Budidaya Ikan Nila di Kolam Tanah Bagi Pemula
Nila

Budidaya Ikan Nila di Kolam Tanah Bagi Pemula

Ikan nila merupakan ikan yang sangat banyak di cari di pasaran. Ikan ini sangat banyak peminatnya karena ikan ini memiliki tubuh besar dan daging yang banyak dan juga memiliki rasa yang enak.Harga dari ikan ini relatif terjangkau di kalangan masyarakat luas sehingga menjadi salah satu primadona bagi pecinta olahan ikan. Pemeliharaan ikan ini pun tidak lah sesulit apa yang kita semua bayangkan karena memang hamper sama dengan pembudidayaan ikan lainnya.Persiapan KolamPersiapan kolam budidaya merupakan starter awal di dalam melakukan pembudidayaan dan ini merupakan salah satu hal yang tidak dapat di abaikan karena kolam merupakan tempat hidupnya ikan dan perlu mendapatkan perhatian khusus.Kolam ikan ini dapat menggunakan beberapa media seperti menggunakan kolam tanah, kolam semen, kolam terpal, hingga menggunakan jaring terapung. Dan kali ini akan di bahas mengenai media dengan kolam tanah.Menggunakan kolam tanah ini dapat di katakana sebagai media yang sangat mudah dan murah karena tidak memerlukan bahan tambahan. Dan kolam jenis ini memiliki keunggulan karena dapat menjadi tempat bertumbuhnya tumbuhan dan juga hewan yang nantinya akan berguna sebagai makanan alami dari ikan nila.Baca juga: Budidaya Ikan Nila di Kolam Air DerasLangkah Persiapan Kolam BudidayaDalam langkah persiapannya akan banyak sekali yang di lakukan dan akan di jabarkan sebagai berikut:Pengeringan Dasar KolamPengeringan ini di lakukan dengan di jemur selama 3-7 hari tergantung cuaca dengan patokan tanah sudah meretak dan ketika di injak akan meninggalkan jejak sedalam  1-2 cm.Pembajakan atau PencangkulanBajak atau cangkul permukaan tanah sedalam kurang lebih 10 cm sembari membersihkan bebatuan dan kotoran di dalam kolam.PengapuranPengapuran ini di lakukan apa bila tingkat keasaman tinggi atau pH rendah. Pengapuran ini dapat di lakukan dengan dolomit atau kapur pertanian lainnya. Pengapuran di lakukan untuk mendapatkan tingkat keasaman yang pas yaitu 7-8 pH. Dosis yang di perlukan tergantung tanahnya, untuk pH 6 sebanyak 500kg/ha. pH 5-6 sebanyak 500-1500 kg/ha, pH 4-5 sebanyak 1-3 ton/ha. Kapur harus dapat di pastikan masuk ke dalam permukaan tanah sedalam 10 cm dan selanjutnya di diamkan selama 2-3 hari.Baca juga: Pembenihan Ikan Nila Merah dalam WadukPemupukanPemupukan sebaiknya menggunakan pupuk organic seperti pupuk kandang atau kompos. Pupuk ini diberikan agar dapat mengembalikan suburnya tanah & dosis yang diberikan kurang lebih 1 sampai 2 ton per hektarnya. Pupuk di sebar merata dan di diamkan 1-2 minggu. Jika merasa perlu, bisa tambahkan pupuk kimia seperti urea 50 sampai 70 kg/ha & TSP 25 sampai 30kg/ha kemudian biarkan kembali 1 hingga 2 hari kedepan.PengairanPengairan ini dapat di lakukan bertahap dengan mengalirkan air sedalam 10-20 cm dan di diamkan selama 3-5 hari agar terpapar sinar matahari untuk dapat memberi ganggang dan organisme air lain dapat tumbuh. Kemudian isikan kembali air hingga mencapai ketinggian 60 sampai 70 cm.Memilih BenihSetelah semua selesai maka di perlukan benih ikan. Pemilihan benih ini sangat sensitif dalam menentukan tingkat keberhasilan dan untuk hasil yang baik dapat menggunakan benih ikan dengan jenis kelamin jantan di karenakan pertumbuhan ikan nila jenis jantan ini 40% lebih cepat di bandingkan dengan jenis betina.Dengan budidaya monosex atau berkelamin sama akan lebih produktif jika di bandingkan dengan berkelamin campuran. Ikan nila ini sangat gampang dalam melakukan perkawinan sehingga akan di khawatirkan menghabiskan energy lebih untuk melakukan perkawinan dan pertumbuhan dari si ikan akan terhambat.Baca juga: Cara Mudah Memilih Bibit dan Indukan Ikan NilaPenebaran BenihSetelah kolam terisi air 60-75 cm maka akan siap di tebari benih. Tingkat padatnya ikan kurang lebih sebanyak 15 sampai 30 ekor per m² nya dgn benih yang berukuran 10 sampai 20 gr/ekor yang nantinya bakal di panen ketika sudah mencapai 300 gr/ekor. Sebelum melakukan penebaran alangkah baiknya jika di lakukan adaptasi agar ikan tidak kaget dan mati.Caranya adalah dengan memasukan wadah berisi benih ikan nila ke dalam kolam dan biarkan beberapa jam dan setelah itu miringkan wadah benih ikan nila dan biarkan ikan keluar dengan sendirinya.PemeliharaanSetelah itu di lakukan perawatan hingga ikan nila panen. Berikut langkah-langkah di dalam pemeliharaan ikan nila:Pengelolaan airAir sangatlah penting bagi ikan maka dari itu perlunya perawatan khusus pada air kolam dengan parameternya yaitu kandungan oksigen dan pH air. Atau juga dapat di lakukan pemantauan kadar NH3, Co2 dan H25 apa bila di perlukan.Apabila kandungan oksigen rendah dapat di lakukan sirkulasi air dengan menaikan aliran debit air. Ketika kolam sudah mengandung H25 dan NH3 dengan bau yang busuk maka segera ganti air dengan cara mengeluarkan ⅓ air dan menambahkan air baru.Baca juga: Budidaya Ikan Nila dengan Teknologi BioflokPemberian pakanBeli Pakan Ikan Nila disini!Pakan sangatlah penting dan perlu pengelolaan yang baik. Berikanlah pakan pelet dgn tingkat protein sebesar 20-30%. Perlu diketahui ikan nila memerlukan pakan setidaknya 3% dari besar bobot tubuhnya sendiri setiap hari. Pemberian pakan di lakukan pagi dan sore, untuk memastikannya dapat di lakukan sampel ikan per 2 minggu dan di timbang bobotnya sehingga dapat di ketahui berapa pakan yang di perlukan.Kalkulasi kebutuhan pakan ikan nila:Satu kolam ada 1500 ekor ikan nila dgn ukuran 10 sampai 20 gr/ekor.Rata-rata bobot ikan → (10+20)/2 = 15 gr/ekor.Maka kalkulasi pakan yang dibutuhkan → 15 x 1500 x 3% = 675 gr = 6,75 kg / hariCek rutin bobot ikan setiap 2 minggu agar dapat menyesuaikan volume pakan yang dibutuhkan.Pengendalian Hama dan PenyakitIkan nila ini merupakan ikan yang sangat kuat sehingga pada situasi normal dapat bertahan tetapi apabila budidaya secara besar maka serangan penyakit perlu di perhatikan. Tersebarnya penyakit ikan nila ini amat cepat apalagi jenis penyakit infeksi yang menular. Penularan dapat lewat air sehingga dapat menjangkit 1 kolam ikan bahkan lebih.PemanenanPanen dapat di lakukan dengan keperluan pasar dan ukuran untuk pasar berkisar 300-500 gram/ekor. Pemeliharaan ikan nila yang berukuran 10 sampai 20gr/ekor hingga 300 sampai 500gr/ekor bisa kita  lakukan dengan waktu kurang lebih 4 – 6 bulan.Demikianlah penjelasan mengenai Budidaya Ikan Nila di Kolam Tanah Bagi Pemula. Semoga informasi di atas dapat menjadi salah satu sarana pembelajaran dan pengetahuan mengenai budidaya ikan nila. Semoga usaha anda sukses kedepannya. Terimakasih.Sumber: kebun.co.id ...
Combining Yucca Extract and Yeast in Tilapia Farming
Nila

Combining Yucca Extract and Yeast in Tilapia Farming

Improve water quality, tilapia yield with Yucca extract and S. cerevisiae yeastTilapia is a freshwater fish that has been growing rapidly recently. Intensive fish farming can adversely affect the yield and health of the fish. Environmental stressors, including intensive ammonia toxicity can cause tissue damage, immunosuppression and oxidative stress, care should be taken in finding ways to minimize these effects. this disadvantage is in fish. Yucca ( Yucca schidigera ) (is a medicinal plant, has many bioactive ingredients including saponins and polyphenols.These phenolic compounds are responsible for improving the health and performance of fish. Biology is often used to improve the growth, health and immunity of fish and shrimp.For this purpose, the yeast Saccharomyces cerevisiae is used as a probiotic due to its positive effects. for aquatic animals.Tilapia (28 - 32g) are randomly assigned to 4 treatments: control (DC), NT1: additional 1 g YE / m 3 , NT2: additional 1 g yeast / m 3 and NT3: 1g yeast + YE / m 3 .Improve water qualityWater quality is the most important factor in achieving optimum fish yield and yield. In this study, neither water temperature nor dissolved oxygen was affected by Y ucca schidigera or yeast supplementation . This may be because the ponds are in the same environmental conditions. On the other hand, the value of pH and NH3 has decreased significantly compared to the pH value when using Yucca schidigera  or yeast, so both when adding to the water improve the water quality. NH3 concentration is known to increase as the pH value and water temperature increase. Therefore, decreased NH 3 levels in treatments may be related to reduced pH values. Yucca schidigera's ability to reduce ammonia levels has been observed in both freshwater and marine fish. Headon and Dawson (1990) suggest that ammonia reduction may be due to the binding of ammonia with a small fraction of Y.schidigera or the conversion of ammonia to nitrite and nitrate. In addition, the use of yeast in this study had significantly reduced the pH value and NH 3 . This is likely due to enhanced microbial activity leading to higher respiration rates and increased CO2 production. Besides, yeasts can use nitrogen compounds as nutrients leading to a decrease in the concentration of NH 3 in pond water. Furthermore, the addition of yeast to pond water can increase the amount of nitrifying bacteria leading to the conversion of ammonia to nitrite and then to nitrate.Growth performanceThe profitability of fish farming in cement and earthen ponds often depends on water quality and fish yield. In this study, the growth performance of tilapia was significantly improved by the addition of Yucca schidigera or yeast, particularly effective in the combination of yeast and Yucca schidigera . Tilapia is an omnivorous fish that can passively graze on grass and feed on particles suspended in pond water including Yucca schidigera and yeast. Hence, both supplements in water can improve growth, health, immunity and antioxidant responses in this fish. Furthermore, fish in NT used a combination yeast Yucca schidigeraconsume more food (34.6 g / head) than the control group (22.9 g / head). The FCR value (1.37 - 1.41) and the survival rate of fish (98.3 - 100%) were neither affected by treatments supplemented with Yucca schidigera or yeast.Biochemical parametersBiochemical parameters are important to assess the nutritional status, health and adaptability of the fish to the external environment. Elevated glucose levels are known to be a fish's overall response to stress, and they correlate with elevated cortisol levels. However, the glucose concentration of tilapia in the current study was not significantly affected by the use of Yucca schidigera  or yeast. This suggests that Yucca schidigera and yeast are not stressful for the fish. On the other hand, treatments using Yucca schidigera or yeast increased total serum protein and total lipid in fish and the highest value was in the treatment using a combination of yeast and Yucca schidigera. Total serum proteins (serum TP) can be classified into two groups: ALB and GLO, which play an important role in the fish's immune response. Serum TP is capable of maintaining an osmotic balance between blood and tissue and is also very sensitive to metal toxicity. The addition of Yucca schidigera or yeast to pond water in this study significantly increased serum TP, ALB and GLO values. These results are likely due to DNA stimulation, ribosome formation and an increase in protein synthesis in liver tissues. Indeed, elevated levels of ALB and GLO are associated with a stronger nonspecific immune response. AST and ALT are essential enzymes in cellular nitrogen metabolism, amino acid oxidation and hepatic glucose generation, and they can be used as a tool to detect any harmful effects causing damage. liver injury or liver dysfunction. In this study, AST activity was significantly reduced in tilapia when using Yucca schidigera and yeast may be due to the effectiveness of Yucca schidigera and yeast in improving liver health. These findings suggest that both Yucca schidigera and yeast show protective effects on the liver and kidneys. Index of oxidative stressSOD, CAT, and GPx are involved in enzyme mechanisms that help reduce oxidative stress in fish. These enzymes can work to maintain a normal balance and improve any redox imbalances in the biological system. In the current study, adding Yucca schidigera or yeast to pond water significantly increased SOD, CAT, and GPx activities in tilapia, demonstrating the strong antioxidant properties of these supplements. Notably, the highest value was found in NT3 using a combination of yeast and Yucca schidigera , followed by Yucca schidigera followed by yeast, the lowest value was observed in the general group.Overall, this study shows that using 1.0g / L Yucca schidigera in combination with yeast can improve pond water quality by reducing pH and ammonia levels. Furthermore, these additives improve tilapia growth and reduce oxidative stress.Source: Tepbac ...
Budidaya Ikan Nila di Kolam Air Deras
Nila

Budidaya Ikan Nila di Kolam Air Deras

Kenaikan tingkat konsumsi ikan masyarakat saat ini cukup signifikan. Oleh karena itu kebutuhan akan ikan konsumsi terutama nila mulai meningkat. Budidaya nila di Kolam Air Deras merupakan salah satu alternatif usaha budidaya intensif, padat modal dan teknologi memadai. Padat tebar yang tinggi, mencapai 20 kg/m3  dan pakan buatan fool dari luar tanpa mengandalkan pakan alami serta sirkulasi oksigen yang tinggi merupakan salah satu kreteria teknologinya.KolamKolam air deras dapat berbentuk botol, bulat maupun segi tiga. Luas kolam tidak lebih dari 30 m2  Kemiringan antara inlet dan outlet  sebesar 8%. Prinsipnya adalah dalam jangka waktu 10 menit  seluruh air kolam sudah terganti. Air bawah dibuat deras dengan harapan semua kotoran ikan dan sedimen bias hanyut, tetapi air permukaan tenang tempat berlindungnya ikan. Dengan demikian baik inlet maupun outlet dibuat di dasar kolam dengan menggunakan pipa maupun buis beton.Baca juga: Pembenihan Ikan Nila Merah dalam WadukBenihPenebaran benih dilakukan pada pagi hari untuk mempercepat proses adaptasi dengan ketentuan : Benih dipilih benih berukuran seragam dengan ukuran 10-12 cm, Seleksi, berasal dari keturunan yang berkualitas, strain yang baik, aktif bergerak, tidak cacat, merupakan turunan 1 paket lengkap induk  serta hasil seleksi, Padat penebaran : 20 kg/m2PakanPemberian pakan dilaksanakan 3 x sehari diberikan pada pagi, siang, dan sore hari disebar secara merata. Dosis pakan diberikan sebanyak 3-5 % dari biomasa per hari. Jenis pakan yang diberikan dapat berupa pakan apung maupun pakan tenggelam dengan kadar protein minimal 28%, Karbohidrat minimal 12%, Lemak Minimal 8%, Serat kasar maksimal 8 %.Baca juga: Cara Mudah Memilih Bibit dan Indukan Ikan NilaPemeliharaanMasa pemeliharaan selama 3 bulan untuk mencapai ukuran konsumsi yaitu 250 gr up. Pada masa ini pengamatan kualitas air dilaksnakan secara rutin, sedangkan sampling dilakukan secara berkala setiap bulan. Hal ini dimaksudkan untuk mengetahui tingkat pertumbuhan ikannya serta kondisi ikan saat itu. Berdasarkan hasil sampling, dapat ditentukan biomasa serta volume pakan yang diberikan waktu berikutnya.Panen dan PemasaranPanen dilaksanakan secara selektif, khusus yang memenuhi ukuran pasar. Panen  diharapkan dapat dilaksanakan oleh anggota kelompok dan didampingi oleh penyuluh. Hal ini dimaksudkan agar keterampilan anggota kelompok dapat ditingkatkan, dan dapat melaksanakan kegiatan panen tidak hanya di kelompoknya, tetapi juga di anggota kelompok lain. Hal ini dimaksudkan untuk pemberdayaan anggota kelompok secara optimal. Untuk pemasarannya langsung dipasarkan yang difasilitasi penyuluh atau petugas perikanan lainnya dengan sasaran kolam pancing, pasar ikan dan pasar tradisional.  Pasar khusus adalah rumah makan dengan ukuran nila tertentu.Sumber: diskan.tabanankab.go.id ...
Meningkatkan Produktivitas Budidaya Ikan Nila dengan Smart Heater
Nila

Meningkatkan Produktivitas Budidaya Ikan Nila dengan Smart Heater

Budidaya ikan nila (Orechromis sp) bukanlah suatu hal yang susah.  Ikan nila termasuk ikan pemakan segala atau omnivore. Makanan alaminya yaitu plankton, tumbuhan air dan berbagai hewan air lainnya.Untuk melakukan budidaya ikan nila terdapat beberapa hal yang harus diperhatikan terutama suhu. Pada sejumlah penelitian disebutkan bahwa suhu air akan mempengaruhi kehidupan ikan. Suhu mematikan atau lethal berkisar antara 10 – 11 C selama beberapa hari. Tingkat nafsu makan ikan akan menurun jika suhu air berkisar dibawah 16 – 18 C. Ikan juga akan mudah terkena penyakit jika suhu air dibawah 21 C. Suhu yang disarankan dari beberapa penelitian untuk budidaya ikan yaitu berkisar 28 – 32 C. Namun di sejumlah jurnal mengenai ikan nila menyebutkan suhu optimal untuk budidaya ikan nila (Orechmoris sp) yaitu 20 – 30 C.Baca juga: Pentingnya Seleksi pada Pembenihan NilaAdanya faktor suhu yang menentukan produktivitas, maka diperlukan alat yang dapat memantau serta mengontrol suhu air buidaya ikan nila. Smart Heater dapat membantu menangani hal tersebut. Smart Heater dapat mengatur suhu air budidaya ikan nila karna terdapat pemanas air untuk mengatur suhu air dan sensor suhu DS18B20 sebagai pemantau suhu air. Smart Heater juga telah terintegrasi dengan Internet of Things akan mempermudah pemilik budidaya ikan dalam memantau dan mengontrol suhu air.Smart Heater juga memiliki dua mode, otomatis dan manual. Dalam mode otomatis, Smart Heater akan mengatur suhu sesuai dengan batasan suhu yang diberikan user. Untuk mode manual, user dapat memasukan target suhu yang diinginkan dan Smart Heater akan membuat suhu air sesuai dengan suhu yang dimasukan user.Smart Heater bekerja dengan memasang pemanas serta sensor suhu pada kolam budidaya ikan nila. Kotak pengontrol yang telah terhubung dengan pemanas serta sensor suhu diletakan di pinggir kolam.Baca juga: Jadermawan Sinaga: Nila RAS ala Ibu RumahanKotak pengontrol ini merupakan otak dari Smart Heater yang akan memproses data sensor dan menjadikan nilai data tersebut sebagai parameter untuk menghidupkan atau mematikan pemanas air. Kotak pengontrol ini juga terhubung dengan WiFi sehingga dapat mengirimkan data suhu ke website yang dapat dilihat oleh pengguna. Website ini selain memantu suhu juga sebagai pengontrol bagi user untuk mengatur mode dan suhu pada Smart Heater.Namun untuk kekurangan dari Smart Heater ini yaitu diperlukan konektivitas WiFi yang terhubung ke internet sehingga pembudidaya dapat memantau dan mengontrol suhu pada kolam ikan. Tentu hal ini tidak baik jika lingkungan budidaya ikan nila tidak memiliki WiFi untuk terhubung ke internet.Sumber: Suara.com ...
Pembenihan Ikan Nila Merah dalam Waduk
Nila

Pembenihan Ikan Nila Merah dalam Waduk

Ikan nila merah adalah salah satu komoditas yang populer di kalangan masyarakat Indonesia. Selain karena pertumbuhannya yang cepat, ikan nila merah juga memiliki banyak peminat sehingga peluang untuk Anda menjual ikan ini di pasaran sangatlah besar.Pembenihan ikan nila merah pada dasarnya dapat dilakukan di berbagai bentuk wadah yang tersedia di lingkungan Anda. Ikan yang memiliki warna tubuh kemerahan ini dapat Anda budidayakan di kolam beton, kolam tanah, terpal, bahkan waring atau hapa dalam waduk. Jika Anda memilih untuk membudidayakan ikan nila merah di waduk, maka jaring hapa dapat menjadi pilihan wadah budidaya yang tepat. Seperti ikan air tawar pada umumnya, pembenihan ikan nila merah terdiri dari beberapa proses di antaranya pemeliharaan benih, pemeliharaan induk serta pemeliharaan telur yang semuanya dilakukan menggunakan jaring hapa.Baca juga: Pentingnya Seleksi pada Pembenihan NilaPemeliharaan IndukPemeliharaan induk jantan dan betina nila merah dilakukan secara terpisah karena jika digabungkan, ikan nila merah dapat dengan mudah melakukan pemijahan secara alami. Jika dibiarkan pemijahan akan terjadi secara tidak terkendali yang akan menyebabkan kesulitan dalam pemeliharaan larvanya nanti. Induk ikan nila yang dipelihara secara terpisah diberikan pakan yang sesuai dengan kebutuhannya untuk membantu proses kematangan gonadnya. Jenis pakan yang dapat Anda berikan adalah pakan pellet yang sebaiknya memiliki kandungan protein antara 32-35%, kemudian diberikan sebanyak 3% dari berat total ikan perhari. Induk jantan dan betina yang sudah matang kelamin dipilih untuk digunakan dalam pemijahan. Perlu Anda perhatikan, bahwa ikan nila betina memasuki matang gonad setelah berumur 5-6 bulan. Pada umur ini, bobot dari induk nila merah yang siap dipijahkan setidaknya telah mencapai bobot 200-250 gram dan untuk induk jantan 250-300 gram.Wadah yang digunakan untuk pemeliharaan induk ikan nila merah dalam waduk adalah keramba jaring polyethylene D-12, dengan ukuran mata jaring 0,75 inci dimensi 3,5 x 7 m2  dan kedalaman air 2 m. Sebelum pemijahan dilakukan, sebaiknya ikan nila diberokkan (puasa) selama 15 hari. Usahakan penempatan kedua hapa pemeliharaan jantan dan betina tidak berdekatan untuk menghindari pemijahan liar akibat sperma dan telur yang terbawa air.Baca juga: Cara Mudah Memilih Bibit dan Indukan Ikan NilaPemijahan IndukWadah yang dapat Anda gunakan untuk melakukan pemijahan induk memiliki luas 15 m2 dengan dimensi 2 x 7,5 m dan kedalam 60 cm. Ikan jantan dan betina digabungkan ke dalam satu wadah dengan padat tebar dalam hapa pemijahan adalah 3 ekor/m2. Pemijahan masal ini dilakukan dengan rasio perbandingan jantan dan betina 1:4. Pemberian pakan pada induk ikan nila merah yang akan memijah adalah dengan memberikan pakan komersil dengan kandungan protein 32-35% diberikan sebanyak 2% dari berat total ikan per hari.Semakin luasnya hapa pemijahan, semakin besar ruang yang tersedia bagi induk untuk berpijah dan mengasuh anak-anaknya. Pada dasarnya ikan nila merah betina, akan mengerami telur-telurnya di dalam mulut sebelum akhirnya menetas dan menjadi larva.Pemijahan dilakukan untuk menghasilkan larva dengan kisaran ukuran 0,8 – 1,0 cm. Selanjutnya Anda dapat melanjutkan ke tahap pendederan yang dibagi menjadi 2 tahap, pendederan tahap I untuk menghasilkan benih berukuran 3- 5 cm dan dilanjutkan dengan pendederan tahap II meniadi benih berukuran 8-12 cm. Baca juga:  Budidaya Ikan Nila dengan Teknologi BioflokPemeliharaan larvaLarva ikan nila yang telah menetas, sebaiknya dibesarkan di tempat khusus. Pemindahan dilakukan setelah larva berumur 5-7 hari.Pada pendederan tahap I, Anda dapat menggunakan hapa dengan mata jaring 2 mm agar larva hasil pemijahan tidak lolos. Padat penebaran adalah 1000 ekor/m3. Hal yang perlu Anda perhatikan adalah kebersihan dari hapa karena cukup mudah tertutup oleh lumut akibat mata jaringnya yang kecil. Pendederan tahap I dilakukan selama kurang lebih 2 bulan.Pendederan tahap II menggunakan jaring waring yang mempunyai bukaan mata jaring 4 - 5 mm. Benih yang ditebar pada tahap ini memiliki panjang total 6,1 – 6,5 cm, berat 4,90 – 5,68 gram dan kepadatan 600 ekor/m3 . Pada tahap ini dilakukan pemeliharaan selama 2 bulan. Benih yang dipanen dapat mencapai ukuran berat 33,9 – 41,8 gram/ekor.Tips untuk Anda, agar ikan nila tidak stress akibat terik matahari dan juga serangan hama seperti burung, Anda dapat menambahkan peneduh menggunakan hapa pada bagian atas hapa atau waring pemeliharaan.Kualitas air pada kolamKualitas air dalam pemeliharaan perlu Anda perhatikan untuk mengurangi stress yang dapat menyebabkan imunitas ikan turun bahkan kematian. Suhu yang optimal pada tahap pemijahan dan pendederan berkisar antara 27 – 33 ⁰C. Oksigen terlarut pada wadah diusahakan tidak kurang dari 5 ppm agar ikan tidak stress. Selain itu kandungan CO2 diusahakan tidak melebihi 10 ppm karena dapat membahayakan kehidupan ikan itu sendiri.Dibuat oleh Tim MinapoliSumber:Rustadi et al. 1996. Pembenihan nila merah (Oreochromis sp) menggunakan jaring apung di wadung kedungombo. Jurnal Perikanan UGM. 1(1): 54-62https://alamtani.com/pembenihan-ikan-nila/#:~:text=Ikan%20nila%20mudah%20memijah%20secara,mengelola%20agar%20pemijahan%20berlangsung%20terkendali.Willem H.S , Yudi P, Annita S. 2019. Pengaruh kualitas air terhadap pertumbuhan ikan nila nirwana (oreochromis sp.) pada tambak payau. The Journal of Fisheries Development. 3 (2): 95 – 104 ...
Influence Of Diet Type on Gut Microbiome, Nutrient Assimilation in GIFT Tilapia
Nila

Influence Of Diet Type on Gut Microbiome, Nutrient Assimilation in GIFT Tilapia

Tilapia are amongst the most important aquaculture species of the 21st century, accounting for 10 percent of the world’s finfish production. Nile tilapia (Oreochromis niloticus) is the most commonly farmed tilapia species accounting for 8 percent of tilapia production through both commercial and small-scale aquaculture.WorldFish selectively bred O. niloticus to develop the Genetically Improved Farmed Tilapia (GIFT). The global impact and success of GIFT has been particularly evident in developing nations where it has helped to improve food and income security.Inland aquaculture in Papua New Guinea (PNG) is mostly small-scale subsistence farming with growth limited by infrastructure, the high cost and limited availability of commercial feed, the poor economic status of people and a lack of fish husbandry skills in the farming communities. The farming of GIFT has been a greater success in PNG compared to other fish species, such as trout, because it is a lower maintenance species and easy to breed. Nevertheless, the ruggedness of PNG’s interior, where GIFT is mostly farmed, makes fish farming a challenge.As for many farmed species, commercial fish feed pellets are widely considered the best option to increase GIFT farm productivity; however, only 10 percent of the small-scale fish farmers in PNG use commercial fish feed. Although the nutritional needs of farmed tilapia can be met through a variety of natural food sources, a poor diet can negatively impact their growth and overall health.Knowledge of the composition and microbial diversity within the gastrointestinal tract is vital because of the influence these symbionts have on the host’s growth and survival. For aquatic species, including finfish, farming practices can heavily influence the gastrointestinal microbiota, impacting digestion and the assimilation of essential nutrients. Recent studies on tilapia microbiomes (the collective genomes of the microorganisms that reside in an environmental niche or the microorganisms themselves) have generated data on the effects of dietary supplementation and rearing conditions; however, little is known on the effects of locally sourced feeds.This article – adapted and summarized from the original publication – determined how different feeding practices affect the condition, nutrient assimilation patterns and the gastrointestinal microbiome of GIFT reared in earthen ponds.Study setupO. niloticus (GIFT strain) individuals were collected from six different fish farms within the Aiyura Valley in the Eastern Highlands of Papua New Guinea. The stocked GIFT were from the same family line acquired from the Highlands Aquaculture Development Centre (HAQDEC) breeding program. The sampled farms all stock GIFT in earthen ponds, and represent one of two different feeding practices; a locally sourced raw vegetable-based diet (mostly sweet potato, banana leaves and garden waste), hereafter referred to as a “vegetable” diet, and a mixed diet consisting of both the occasional supplementation of raw vegetables (mostly sweet potato, banana leaves and garden waste) and regular commercial feed pellets, hereafter referred to as a “pellet” diet.The commercial fish feed pellets were all from a single imported source from Vietnam and included 30 percent crude protein, 5 percent crude fat, 16 percent ash, 6 percent crude fiber and 11 percent moisture with raw ingredients including fishmeal, wheat flour, soybean meal, fish oil, rice bran and vitamins and minerals. Parameters such as feeding frequency and pond size were recorded on site during sample collection.Fish of similar size were collected from each farm using handheld nets and immediately euthanized. All fish were devoid of any gross or clinical signs of disease. Standard measurements of length and weight were recorded prior to dissection. Dissections were undertaken at HAQDEC within two hours of collection. White dorsal tissue samples were aseptically removed, scaled and skinned before being rinsed with distilled water and stored at minus-20 degrees-C. In addition, the gastrointestinal tract was aseptically removed with a combined hindgut content and hindgut wall sample collected and frozen (initially at minus-20 degrees-C) and stored at minus-80 degrees-C prior to microbial analysis.For detailed information on the experimental design and sampling; microbial analyses carried out including stable isotope analysis and 16S rRNA gene amplicon sequencing and analysis; and statistical analyses, refer to the original publication.Results and discussionThe aim of this research was to determine how different feeding practices affect the condition, nutrient assimilation patterns and the gastrointestinal microbiome of GIFT reared in earthen ponds. Stable isotope analysis of carbon and nitrogen was used to identify differences in diets and therefore the trophic status of GIFT. Additionally, specific microbial assemblages were associated with different conditions, assimilation patterns and feeding practices to support the development of more effective farming practices for small-scale fish farmers.The isotopic values (isotopes are variants of a particular chemical element that differ in neutron number; all isotopes of a given element have the same number of protons but different numbers of neutrons in each atom) of a consumer are related to its diet; therefore, stable isotope analysis can be used to accurately identify a consumer’s dietary profile and trophic status. The carbon-13 (δ13C) isotopic values for both the vegetable only and pellet-fed GIFT indicates some similarities in dietary carbon sources. Assessing dietary carbon is important, as it encompasses essential nutrients such as carbohydrates and lipids, vital for fish health as they play an important role in growth and metabolism.In fish, fluctuations in dietary carbon are often reflected by their gastrointestinal microbiota. In our study, an overlap in dietary carbon may be due to the occasional provision of vegetables to pellet-fed fish; however, a clear separation in nitrogen-15 (δ15N) suggests distinct dietary nitrogen sources. In aquatic systems, including aquaculture ponds, significantly enriched δ15N values can be indicative of anthropogenic nitrogen input such as fertilizers. While the remoteness of our study site and absence of intensive agricultural farming reduces the potential for such anthropogenic inputs, some farmers do use chicken manure to fertilize crops. And small-scale swine production and vegetable cropping also occur in the catchment of the farms, and urban activities in the nearby town of Kainantu, may also be sources of nutrients; however, their contribution to the nutrient budgets of the farms is likely to be negligible.Within pond cannibalism can negatively affect a farm’s ability to produce table-sized fish and can therefore negatively affect productivity and profitability. While fish cannibalize for many reasons, stress, limited food availability and low dissolved oxygen are considered major drivers. Previous studies on tilapia have reported filial (both egg and fry) cannibalism, with stunted individuals, or progeny from the initial stocked fish, more likely to become prey. In our study, vegetable-fed GIFT averaged 6 cm smaller and 100 grams lighter than their pellet-fed counterparts, further supporting the possibility of within pond cannibalism.It should be noted that these differences may also be attributed to age, as fish reproduction in farms is not traditionally controlled and was therefore not considered. While no direct evidence of cannibalism was observed, the organic material in the hindgut of the gastrointestinal tract of fishes is usually in an advanced stage of digestion, thus making it difficult to visually identify what was consumed.The ability of a fish to effectively absorb nutrients and digest foods depends on its gastrointestinal microbiota. The gastrointestinal microbiota can impact a fish’s weight and overall health. Overall, we identified significant differences in the gastrointestinal microbiota of GIFT in response to feeding practice. This result is in accordance with previous studies that have reported changes in the microbiome of fishes in response to changes in diet, and dietary supplementation.An operational taxonomic unit, or OTU, is an operational definition used to classify groups of closely related individuals, while zOTUs are valid operational taxonomic units that are corrected to achieve more reliable sequence clustering to group related biological sequences. In our study, a larger number of zOTUs were identified as significantly associated with commercial pellet-fed GIFT than those fed vegetables (Fig. 1), likely reflecting diet stability as has been seen for humans and ants. Farmers using a commercial pellet-based diet for their GIFT consistently source imported tilapia feeds directly from the National Fisheries Authority (NFA). In contrast, the vegetable-only diet is inconsistent and largely determined by harvesting season and the availability of vegetable garden waste.Fig. 1: Bacterial taxa that are significant indicators of diet. Differentially abundant log-transformed zOTUs (identified to the lowest taxonomic level possible) (P-Adj <0.05) that represent the taxa that were found to be significantly indicative or associated with either the pellet, or vegetable-fed GIFT. zOTU abundances have been z-score transformed and thus show the number of standard deviations a zOTUs abundance is from the mean abundance of that zOTU.The presence of nine bacterial taxa across most (90 percent) of the fish in our study is of interest as it implies that these taxa may have been acquired from the hatchery prior to distribution. This finding is significant because the microbial composition of larval and juvenile fish has a significant influence of the microbiome of adults]. Three of these “hatchery-associated” taxa were negatively correlated with relative fish condition and δ13C. These results suggest that depleting the availability of δ13C could decrease the abundance of Fusobacteria, and subsequently improve the relative fish condition of GIFT.Our study has shown that farming practices incorporating commercial-feed pellets increase relative fish condition of GIFT. The promotion of a commercial-feed supplemented farming strategy would need to be incorporated not only by the fish farms, but also the hatcheries because microbial symbionts attained from the rearing water during the early stages of ontogeny can be maintained into adulthood.Fusobacteria are commonly identified as a major constituent of freshwater fish microbiomes. In our study, Fusobacteria correlated with poor fish condition which was predominately the case for vegetable-fed GIFT. Previous studies have reported that high abundances of Fusobacteria are often associated with carnivorous species, likely due to their ability to metabolize protein derived amino acids. Therefore, the possibility that vegetable-fed GIFT are turning to cannibalism could explain the presence of Fusobacteria in fish with poor condition.PerspectivesThe results of our study contribute to a growing body of work on the influence of diet on the microbiota, trophic status and condition of freshwater fishes. We showed that trophic level is not always indicative of a good diet and can represent poor farming practices. Specifically, our results demonstrate how poor feeding practices can negatively impact the success of GIFT farms.We found that fish fed an insufficient vegetable-based diet were in a relatively poor condition and while yet to be confirmed, possibly supplementing their diet through filial cannibalism. These results further highlight the extent of challenges faced by low income, small-scale subsistence farmers in developing nations. Small-scale fish farms account for the majority of inland freshwater finfish aquaculture and play a fundamental role in enhancing not only food and income security but also quality of life.For GIFT to contribute to human nutrition and livelihoods in PNG, they need to be farmed productively and profitability. Further research in rural communities in developing nations is needed to improve farming practices through the education of farmers and increased availability of suitable feeds. The introduction of new farming practices such as the use of mono-sex fingerlings stocked by size class could help boost local production of GIFT in PNG.Furthermore, the development of a low-cost feed alternative that better suits the nutritional needs of GIFT would reduce the costs involved with accessing commercial feed pellets, and further increase the farming success and profits of small-scale GIFT farmers in Papua New Guinea.Source: Global Aquaculture Alliance ...
Cara Mudah Memilih Bibit dan Indukan Ikan Nila
Nila

Cara Mudah Memilih Bibit dan Indukan Ikan Nila

Jika Anda telah memulai berbisnis dari budidaya ikan nila kesuksesan pada bisnis ini memiliki beberapa faktor yang akan menentukan, salah satu yang terpenting adalah pemilihan induk dan benih pada ikan. Faktor bibit dan induk sangat menentukan dalam keberhasilan budidaya ikan nila. Bibit dan induk ikan nila yang baik akan menghasilkan benih yang berkualitas dan memberikan nilai tambah ekonomi yang memuaskan. Berikut bibit dan indukan ikan nila yang unggul memiliki ciri-ciri.- Mampu memproduksi benih.- Pertumbuhannya sangat cepat.- Sangat responsif terhadap makanan buatan yang diberikan.- Resisten terhadap serangan hama.- Dapat hidup dan tumbuh baik pada lingkungan perairan.- Ukuran induk yang baik untuk dipijahkan yaitu 120–180 gram lebih per ekor dan berumursekitar 4–5 bulan.- Berikut ciri-ciri untuk membedakan induk jantan dan induk betina.Beli benih ikan nila disini!Betina- Terdapat 3 buah lubang pada urogenetial yaitu: dubur, lubang pengeluaran telur dan lubang urine.- Ujung sirip berwarna kemerah-merahan pucat tidak jelas.- Warna perut lebih putih.- Warna dagu putih.- Jika perut distriping tidak mengeluarkan cairan.Baca juga: Budidaya Ikan Nila dengan Teknologi BioflokJantan- Pada alat urogenetial terdapat 2 buah lubang yaitu: anus dan lubang sperma merangkap lubang urine.- Ujung sirip berwarna kemerah-merahan terang dan jelas.- Warna perut lebih gelap/kehitam-hitaman.- Warna dagu kehitam-hitaman dan kemerah-merahan.- Jika perut distriping mengeluarkan cairan.Sumber: Bulelengkab.go.idTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina. Eventmina.  ...
Study Tests Autogenous Vaccine to Protect Nile Tilapia
Nila

Study Tests Autogenous Vaccine to Protect Nile Tilapia

A bacterium known as Lactococcus garvieae  has been wreaking havoc on the relatively young, but fast growing tilapia aquaculture in Zambia.Commercial farming of Nile tilapia in Zambia began in the 1990s. However, raising tilapia rapidly intensified on Lake Kariba around 2010. The country’s annual  production is now around 30,000 metric tons.The intensified farming has brought the outbreak of disease, according to a recently study by researchers focused  on developing a whole bacterial cell autogenous oil-based vaccine for the protection of tilapia against L. garvieae infections.The pathogenic bacterium L. garvieae, which is known to attack trout, began infecting farmed tilapia in Zambia. Clinical signs include exophthalmia, conjunctivitis, melanosis, erratic swimming, anorexia, internal hemorrhage and congestion of blood vessels, peritonitis, meningoencephalitis and septicaemia.Farmers have experienced economic losses as mortality rates grew.Also read: Using Supplemental Amino Acids to Reduce Dietary Protein Levels of Nile Tilapia Gives Economic and Environmental BenefitsAutogenous vaccinesThere is no protective commercial vaccine for tilapia available on the market at the moment.The researchers believed that an autogenous vaccine would be ideal for use in Zambia. Autogenous vaccines are produced on a small to medium scale. They are based on pathogens isolated from a farm on which they are to be used.These vaccines, according to the researchers, “have the advantage of being less amenable to rigorous regulations applicable to commercial vaccine and allow for more rapid availability without complete and comprehensive characterization in the face of an outbreak.”Antigens and vaccine  for the study were formulated from L. garvieae  previously isolated from a diseased fish at a farm on Lake Kariba.The vaccine was formulated using 109 CFU (colony forming units)/mL as a water-in-oil emulsion using the ISA 763 VG adjuvant (a pharmacological or immunological agent that improves the immune response of a vaccine) from Seppic, France.The studyA total of 460 healthy Nile tilapia with mean weight of 41.5g ± 16.5g were purchased from Palabana fisheries, a commercial fish farm located in Chirundu district, south east of Zambia. The fish farm had no previous history of disease outbreak.The fish were transported to the University of Zambia, School of Veterinary Medicine wet-lab. The fish were kept in 500-litre tanks supplied with flow-through dechlorinated water and aerated using stone bubblers. They were allowed to acclimatize for 10 days prior to commencement of the experiment.The 450 fish were divided into three groups [control (in phosphate-buffered saline, or PBS), adjuvant, and vaccine], each with 150 individuals. The control fish were injected with PBS, the adjuvant group were injected with adjuvant only, and the vaccine group with the L. garvieae vaccine. Each group was further split into two replicates, one for observation (surveillance) and the other for sampling.Also read: L-Selenomethionine: a Powerful Antioxidant for Commercial Finfish AquacultureResultsClinical signs of disease were observed mostly in the control (PBS) and adjuvant only groups.In the adjuvant group, the first onset of clinical signs was on five days post-challenge (dpc ) followed by seven dpc. In the vaccinated group, only two fish showed clinical signs, one at three dpc, likely due to physical injury unrelated to the pathogen challenge, and another one at 14 dpc, this time with corneal opacity.“Nile tilapia immunized with oil-based L. garvieae vaccine in our study produced significantly higher amounts of antibodies than the control or adjuvant only groups by 21 days post vaccination,” according to the study. “This trend continued until three days post challenge, when the antibody titers [how much specific antibody an organism has produced] dropped sharply.”The researchers said their findings “suggest that the mechanism for fish protection is achieved is likely via an antibody mediated response.”The results of the study suggests that tilapia can be vaccinated and protected against L. garvieae by using inactivated oil adjuvanted autovaccines.Source: Hatchery International ...
Pentingnya Seleksi pada Pembenihan Nila
Nila

Pentingnya Seleksi pada Pembenihan Nila

Produksi budidaya benih nila mengalami pasang surut bergantung kondisi cuaca, lingkungan, dan penyakit ikan. Disamping pengetahuan tentang managemen kesehatan ikan, juga diperlukan pengetahuan tentang budidaya pemeliharaan ikan yang baik. Budidaya perikanan tidak terlepas dari pentingnya pemilihan benih yang unggul baik secara kualitas maupun kuantitas. Benih yang berkualitas merupakan benih yang mampu dan tahan dalam segala kondisi cuaca untuk beradapatasi terhadap lingkungan maupun penyakit, sedangkan secara kuantitas terlihat pada tingkat kelangsungan hidup yang tinggi dan jumlah yang melimpah.Ketahanan seekor benih ikan bukan hanya dinilai dari kesehatan benih ikan yang dihasilkan, tetapi seberapa banyak benih berkualitas yang dapat diproduksi. Hal ini terlihat dari  target pemerintah yang antusias meningkatkan tingkat konsumsi masyarakat terhadap ikan menjadi 56,39 kg/kapita/tahun ditahun 2020 (KKP, 2020). Oleh karena itu, dibutuhkan cara yang tepat untuk mendapatkan kuantitas benih yang melimpah sekaligus berkualitas.Seperti halnya pemeliharaan ikan lele diperlukan tahapan seleksi atau lebih dikenal dengan istilah “grading”. Seleksi menjadi salah satu cara yang biasa dilakukan dalam budidaya ikan lele dikarenakan sifat ikan lele yang kanibal (pemangsa sejenis). Selain lele, praktik seleksi juga dilakukan pada beberapa ikan yang tidak bersifat kanibal. Hal tersebut dilakukan karena tujuan mendapatkan keseragaman ukuran.Lain halnya seleksi pada ikan yang bukan termasuk golongan kanibal. Seleksi biasanya dilakukan di tahap pembesaran untuk memacu pertumbuhan ikan yang lebih kecil sehingga dapat mengejar ukuran yang sesuai dengan permintaan pasar. Namun, sedikit sekali pembudidaya yang mempraktikan seleksi pada tahapbenihikan nila. Hal tersebut dikarenakan minimnya literatur yang menyatakan bahwa ikan nila bersifat kanibal.Sebagian besar orang berpikir bahwa ikan nila bukan termasuk kanibal, karena ikan tersebut hanya meletakan anak-anaknya (mengerami) dalam mulut. Fakta bahwa ikan nila memiliki sifat mengerami anaknya di dalam mulut memang benar adanya. Namun, terdapat tahap dimana sebagian orang tidak menyadari ketika tahap pembenihan. Pada saat ini, pembenihan ikan nila oleh pembudidaya lokal masih dilakukan dengan metode konvensional tanpa menggunakan inkubator. Terkadang benih yang baru menetas dipisahkan dengan induk dan ditanam pada satu lokasi dan hanya memiliki tingkat kelangsungan hidup (survival rate) yang rendah.Bagi sebagian orang akan langsung menilai bahwa benih tersebut tidak unggul, ataupun terkena penyakit. Fakta di lapang yang terkadang tidak disadari bahwa terdapat ikan dengan ukuran jauh lebih besar yang ikut masuk pada tahap tanam terkadang terabaikan. Karena jumlah pakan yang diberikan pada tahap benih disesuaikan dengan ukuran benih nila, sehingga ikan yang memiliki ukuran tubuh lebih besar akan memenuhi kebutuhannya dengan memakan pakan sekaligus memangsa ikan yang jauh lebih kecil. Hal tersebut merupakan salah satu faktor yang menyebabkan tingkat kelangsungan hidup benih nila menjadi rendah.Belum diketahui pasti kemampuan ikan nila untuk memangsa ikan sejenisnya yang memiliki ukuran tubuh lebih kecil. Sebagai ilustrasi pada gambar terlihat ikan nila dengan ukuran panjang 5 cm,pada bagian lambungnya terdapat ± 56 ekor nila ukuran benih. Ikan nila dengan ukuran 10 kali lipat, mampu dalam sehari memakan ikan kecil dengan jumlah yang banyak. Tidak heran apabila kelangsungan hidup benih menjadi rendah dikarenakan ada satu faktor yang kurang diperhitungkan. Oleh karena itu, para pembudidaya benih nila seharusnya menyadari pentingnya seleksi ‘grading’ pada benih ikan nila.Manfaat seleksi benih nila pada dasarnya sama seperti halnya pada ikan lain dengan tujuan tercapainya tingkat keseragaman ukuran (sesuai umur ikan). Seleksi juga berpengaruh terhadap efisisiensi pakan. Ukuran yang seragam akan memudahkan dalam pemilihan jenis pakan yang tepat dan tercapai pertumbuhan secara cepat. Selain itu, manfaat lain dari seleksi yaitu mengurangi tingkat kanibalisme ikan nila pada tahap benih,sehingga tercapai tingkat kelangsungan hidup yang lebih tinggi. Dampak dari tingkat kelangsungan hidup yang tinggi akan mendapatkan jumlah benih yang melimpah sehingga produksi pembesaran dapat lebih ditingkatkan. Artikel Asli: Trobos Aqua ...
Ikan Nila, Sumber Pangan dan Gizi untuk Pencegahan Stunting
Nila

Ikan Nila, Sumber Pangan dan Gizi untuk Pencegahan Stunting

Hambatan pertumbuhan tubuh atau stunting pada anak biasanya terjadi karena masalah kurang gizi yang kronis dan diakibatkan kurangnya asupan gizi dalam waktu yang cukup lama. Kondisi itu membuat pertumbuhan pada anak menjadi terganggu, di Nusa Tenggara Timur, angka stunting masih menjadi yang tertinggi di Indonesia dengan mencapai 43,8 persen. Fakta tersebut menegaskan bahwa NTT menjadi salah satu provinsi yang kesulitan mengakses sumber pangan bergizi dengan mudah dan murah. Untuk mengatasinya, Pemerintah Indonesia melaksanakan budi daya perikanan dengan teknologi sistem bioflok untuk ikan Nila di NTT. Program tersebut diharapkan bisa memecahkan persoalan kurangnya pasokan ikan dengan harga yang murah.Selain Nila, pemenuhan kebutuhan gizi untuk masyarakat juga bisa didapat dari Lele Mutiara. Ikan yang dikembangkan dari hasil riset Badan Riset Sumber Daya Manusia Kelautan dan Perikanan (BRSDM KP), diketahui memiliki banyak keunggulan dibandingkan lele biasa. Konsumsi ikan oleh masyarakat secara rutin, diyakini tak hanya akan memenuhi kebutuhan pangan dengan harga yang murah saja. Dengan mengonsumsi ikan, kebutuhan gizi yang dibutuhkan oleh anak-anak yang sedang mengalami masa pertumbuhan, juga akan bisa terpenuhi dengan baik. Dari ikan pula, hambatan pertumbuhan tubuh atau stunting akan bisa dihilangkan di seluruh Indonesia.Direktur Jenderal Perikanan Budi daya Kementerian Kelautan dan Perikanan Slamet Soebjakto menjelaskan, dari data Badan Pusat Statistik (BPS) yang dirilis pada 2019, angka penderita stunting di Indonesia terus mengalami penurunan hingga 27,7 persen. Namun, untuk angka per provinsi, Nusa Tenggara Timur (NTT) tercatat menjadi yang tertinggi dengan 43,8 persen. Atas pertimbangan tersebut, Pemerintah Indonesia kemudian memutuskan dilakukan pengembangan budi daya ikan nila (Oreochromis niloticus) dengan menggunakan teknologi bioflok yang terkenal ramah lingkungan dan efisien penggunaan air. Dengan teknologi tersebut, kebutuhan produksi akan bisa dicapai dan harga ikan juga bisa tetap terjangkau untuk masyarakat.“Dengan dikembangkan budi daya Nila dengan sistem bioflok di NTT, itu menjadi tepat karena bisa menjadi solusi untuk memenuhi kebutuhan gizi masyarakat sekitar,” jelas dia belum lama ini di Jakarta.Menurut dia, penerapan teknologi bioflok pada budi daya nila yang dilakukan di NTT menjadi langkah nyata dari Pemerintah untuk meningkatkan produksi ikan air tawar secara nasional. Terlebih, karena provinsi tersebut sampai sekarang masih sangat memerlukan pengembangan potensi perikanan budi daya. Slamet mengatakan, membangun kawasan Indonesia Timur, termasuk NTT dalam rencana perikanan budi daya nasional, adalah salah satu kebutuhan yang penting untuk sekarang. Apalagi, daerah-daerah di Indonesia timur sampai sekarang masih banyak yang belum melek terhadap penggunaan teknologi yang bisa mempercepat proses budi daya perikanan.“Potensi sumber daya alam yang tinggi di kawasan Indonesia bagian timur harus dapat kita manfaatkan dengan menciptakan alternatif usaha berbasis inovasi teknologi budi daya,” tutur dia.Bagi Slamet, penggunaan teknologi budi daya ikan sistem bioflok yang diperkenalkan kepada masyarakat NTT diharapkan akan mampu meningkatkan nilai sumber daya alam yang ada. Dengan bioflok juga, diharapkan bisa memicu ruang pemberdayaan masyarakat yang lebih luas, dan akan menumbuhkan ekonomi masyarakat lokal. Melalui penggunaan teknologi seperti bioflok, aktivitas budi daya perikanan yang ada di Indonesia timur, khususnya di NTT bisa mendorong semakin banyak produksi ikan yang bisa dilakukan sepanjang tahun. Dari situ, diharapkan produksi ikan bisa menjadi sumber pangan bagi masyarakat untuk memenuhi kebutuhan gizi.Sumber GiziSlamet menyebutkan, produk nila saat ini sudah menjadi sumber gizi yang cukup digemari di masyarakat. Untuk itu, teknologi bioflok pada budi daya perikanan, khususnya untuk nila akan terus didorong di berbagai daerah sebagai solusi untuk memenuhi kebutuhan gizi masyarakat.“Dengan semakin banyak anak Indonesia mengkonsumsi ikan, diharapkan akan lahir generasi baru yang tumbuh sehat, bergizi baik dan bebas dari stunting,” tegas dia.Hingga sekarang, komoditas yang paling banyak menggunakan bioflok, adalah lele (Clarias) dan nila. Khusus untuk nila, Slamet menyebutkan bahwa penggunaan bioflok bisa meningkatkan kelulushidupan (survival rate/SR) komoditas tersebut hingga mencapai 90 persen saat berada di dalam tambak. Keunggulan lainnya, adalah tingkat penggunaan pakan menjadi semakin efisien, dan nilai feed conversion ratio (FCR) atau perbandingan antara berat pakan dengan berat total (biomass) ikan dalam satu siklus periode budi daya juga semakin rendah menjadi 1,05.“Angka tersebut menunjukkan, jika pembudi daya ingin menghasilkan ikan nila sebanyak 1 kilogram, maka dibutuhkan pakan sebanyak 1,05 kg,” papar dia.Teknologi bioflok pada budi daya ikan nila juga terbukti meningkatkan kepadatan dalam kolam. Jika menggunakan sistem konvensional, kepadatan maksimal hanya 10 ekor ikan nila/meter kubik, maka dengan menggunakan bioflok kepadatan menjadi 100 ekor/meter kubik. Menurut Slamet, keberhasilan yang sudah dicapai tersebut, semakin menguatkan bahwa pengembangan budi daya nila dengan sistem bioflok menjadi salah satu terobosan untuk meningkatkan produksi nila secara nasional. Teknologi tersebut diyakini bisa meningkatkan pendapatan pembudi daya secara signifikan dan tetap mengutamakan prinsip keberlanjutan.“Penerapan teknologi ini terbukti efektif dan efisien dalam penggunaan sumber daya air dan lahan serta adaptif terhadap perubahan iklim,” tuturnya.Sementara, untuk budi daya nila dengan sistem bioflok mulai dilaksanakan di NTT di Seminari Pius XII Kisol, Kecamatan Kota Komba, Kabupaten Manggarai Timur, pada 2019. Kurang dari setahun, budi daya nila di daerah tersebut sukses memproduksi sampai 100 kilogram dan ditarengkan bisa terus meningkat produksinya. Penanggung jawab Seminari Pius XII Kisol Marsel Zosimus Erot mengatakan, sebelum mengenal sistem bioflok, budi daya ikan air tawar seperti nila yang dilakukan di Seminari Pius XII harus memerlukan penggunaan bak air permanen. Selain itu, tanpa bioflok, budi daya harus dilaksanakan pada lokasi yang memiliki saluran irigasi yang baik.“Tetapi dengan sistem bioflok ini, penggunaan air bisa efisien, namun produktivitas juga bisa meningkat berkali lipat. Keunggulan sistem bioflok yang minim penggunaan air ini sangat cocok untuk diterapkan di sini,” jelas dia.Dengan produksi yang banyak dan biaya lebih murah, Marsel meyakini kalau konsumsi ikan masyarakat akan semakin baik lagi. Sehingga, tujuan untuk membebaskan masyarakat NTT dari stunting diyakini akan bisa tercapai di kemudian hari.lustrasi. Dirjen Perikanan Budi daya KKP Slamet Soebijakto (tiga dari kiri) melihat penggunaan teknologi bioflok pada budi daya ikan nila di Kabupaten Sukabumi, Jabar. Foto : Ditjen Perikanan Budidaya KKP/Mongabay IndonesiaLele MutiaraSelain nila, upaya untuk memenuhi kebutuhan pangan dan gizi masyarakat dari ikan, juga dilakukan Pemerintah dengan mendorong produksi lele di banyak daerah. Salah satu contohnya, adalah di Kabupaten Subang, Provinsi Jawa Barat yang melaksanakan produksi budi daya perikanan lele mutiara di Pondok Pesantren Minhajut Thalibin. Untuk melaksanakan produksi, KKP mendistribusikan sebanyak 6.000 benih lele mutiara ke lembaga pendidikan tersebut. Selain itu, KKP juga menyiapkan sarana penunjang untuk proses produksi seperti kolam dengan adopsi bioflok dan juga pakan ikan.Pendistribusian lele mutiara, dilakukan oleh Badan Riset Sumber Daya Manusia Kelautan dan Perikanan (BRSDM KP) dengan bersinergi bersama Balai Riset Pemuliaan Ikan (BRPI) Subang. Lele mutiara diharapkan bisa menjadi produk perikanan yang dikonsumsi para penguni pondok pesantren dan sekaligus sebagai sumber gizi yang bermanfat untuk meningkatkan daya tahan tubuh.BRSDM KP KKP bersama BRPI Subang mendistribusikan sebanyak 6.000 benih lele mutiara ke Pondok Pesantren Minhajut Thalibin, Subang, Jabar. KKP juga membantu budi daya lele tersebut dengan sistem bioflok. Foto : KKPKepala BRSDM KP Sjarief Widjaja mengatakan lele mutiara adalah komoditas hasil riset berbasis produktivitas unggul yang dilakukan oleh BRSDM KP. Penamaan mutiara merujuk pada akronim “mutu tinggi tiada tiara” yang menjelaskan bahwa Lele hasil riset tersebut bernilai ekonomi dan kualitas yang tinggi.“Kita berharap, budi daya bioflok bisa menjadi sebuah nilai tambah bagi Ponpes dalam mengembangkan kewirausahaan serta memenuhi kebutuhan sumber protein,” ucap dia, dua pekan lalu.Keunggulan dari lele mutiara, di antaranya adalah memiliki laju pertumbuhan yang tinggi dan lama pemeliharaan yang singkat. Kemudian, juga memiliki keseragaman ukuran yang relatif tinggi, daya tahan terhadap penyakit relatif tinggi, toleransi lingkungan relatif tinggi, dan produktivitas yang relatif tinggi. Semua spesifikasi keunggulan tersebut diungkapkan Kepala BRPI Joni Haryadi dengan rinci. Menurut dia, dengan karakteristik yang unggula, lele mutiara perlu untuk disebarluaskan penggunaannya kepada masyarakat dan pelaku usaha budi daya lele yang ada di seluruh Indonesia. “Diharapan itu bisa meningkatkan kesejahteraan masyarakat pembudi daya dan masyarakat pelaku ekonomi ikan lele,” tambah diaSumber:  Mongabay ...
Jadermawan Sinaga: Nila RAS ala Ibu Rumahan
Nila

Jadermawan Sinaga: Nila RAS ala Ibu Rumahan

Berdiam di rumah bukan berarti tak beraktivitas, melainkan berperan serta menggiatkan produktivitas hasil perikananMelakukan usaha budidaya, khususnya budidaya ikan air tawar, tentunya membutuhkan inovasi yang dinamis. Tidak melulu harus memiliki kolam luas, berdiam diri di rumah juga bisa menjadi salah satu kiat untuk melakukan usaha budidaya. Salah satu usaha budidaya di rumah dilakukan oleh Rafika Br P yang bermukin di Desa Sumber Mufakat, Kecamatan Kabanjahe, Kabupaten Karo – Sumatera Utara. Yakni usaha budidaya ikan nila dalam sistem Recirculating Aquaculture System (RAS) ala pekarangan rumah.Apalagi di tengah-tengah pandemi virus covid-19 ini, otomatis kegiatan usaha banyak dialihkan ke dalam rumah. Menurut Rafika, kegiatan rumahan seperti ini dapat membantu mengurangi  kejenuhan ketika berdiam diri di rumah. Modalnya pun, ia terangkan, cukup terjangkau. Bermodalkan Rp 10 juta sejak setahun lalu, ia mendapatkan dua kolam terpal bundar berdiamater 1,5 meter (m) beserta naungan atap dan sistem filterisasi sederhana menggunakan  dua buah drum plastik yang berdiameter 50 cm. Sudah tiga siklus ia lalui dengan menerapkan budidaya sistem RAS ini.RAS sederhanaRafika bercerita, untuk sistem pemeliharaan budidaya ikan nila di kolam terpal ini ia terapkan RAS yang sangat sederhana. Yakni, sama seperti pemeliharaan ikan di dalam akuarium. “Dengan pola sirkulasi air keluar dari kolam,masuk ke dalam filter dan dialirkan kembali ke dalam kolam pemeliharaan ikan,” ungkap perempuan berusia 31 tahun ini.Faktor terpenting di dalam sistem RAS ini adalah filter memadai untuk menyaring sisa kotoran dari ikan yang dipelihara. “Saya juga masih terus belajar untuk sistem filter yang tepat agar sisa kotoran ikan dapat disaring dengan sempurna untuk menjaga kualitas air pemeliharaan,” terangnya yang menerapkan padat tebar 250 ekor benih per kolam terpal.Trik-trik terkait filter ini harus ia terapkan agar nila yang ia pelihara dapat tumbuh optimal. Terlebih ketika menghadapi beragam tantangan berbudidaya. Ketika listrik mati, contohnya.  Rafika mengatakan, ketika listrik mati biasanya ikan nila yang ia pelihara akan naik ke permukaan dikarenakan suplai oksigen di dalam kolam pemeliharaan berkurang. “Berdasarkan pengalaman saya, apabila listrik mati, kita keluarkan kotoran ikan yang mengendap di dasar kolam dan sebisa mungkin kita alirkan air baru ke dalam kolam walaupun kecil. Dulu pernah listrik mati selama 4 jam dan Alhamdulillah ikan yang kita pelihara aman dari kematian dengan cara seperti ini,” jelasnya yang melakukan pemberian pakan dua kali dalam sehari.Tantangan PanenSebelumnya, budidaya ikan yang digelutinya ini merupakan hasil diskusi bersama dengan suaminya yang merupakan salah satu Penyuluh Perikanan Bantu (PPB) yang di tugaskan di Kabupaten Karo - Sumatera Utara. Apalagi, Rafika mengakui, sistem ini cukup dilakukan di dalam rumah sehingga memudahkan dalam pengontrolan.Awalnya dalam dua siklus pertama ia mengembangkan budidaya ikan lele. Ia mengakui, Lebih kurang selama setahun yang lalu kegiatan budidaya ikan lele sistem RAS ini sudah 2 kali melakukan panen. Namun, hasil keuntungan panen yang didapatkan kurang memuaskan."Hanya Rp 500 ribu per 3,5 bulan,” ujar RafikaSelain hasil kegiatan budidaya ikan lele ini kurang memuaskan, menurut Rafika, ada tantangan lainnya. “Khususnya bagi ibu rumahan seperti saya lumayan rumit. Dikarenakan ikan lele harus melakukan sortir yang ketat untuk mengurangi kanibalisme ikan tersebut,” ungkapnya.Walaupun ikan nila juga lebih baik disortir untuk penyeragaman benih yang dipelihara, tidak ada efek yang lebih besar seperti halnya budidaya lele. “Dan nilai jual dipasar hanya dihargain Rp 18 ribu per kilogram (kg). Sedangkan nila harga jualnya jauh lebih tinggi. Yakni, mencapai Rp 28 ribu per kg,” papar Rafika.Berdasarkan pengalaman ini, lanjut Rafika, budidaya yang kemudian ia kembangkan adalah dengan membesarkan nila. Tantangan baru, ia temukan dalam segi permodalan. Karena menurutnya, untuk nila perlu penambahan modal untuk membeli aerator. Alat ini diharapkan untuk mensuplai oksigen ke dalam kolam bundar.Satu lagi hal positif ia amati dengan membudidayakan nila di pekarangan rumah. Setelah ia perhatikan, belum ada kendala walaupun belum pernah disortir. Awalnya dia merasa agak berat karena benih mati bisa mencapai 50 ekor di bulan pertama. “Namun perlahan, tingkat kematian pun menurun dan nila bisa tumbuh dalam pembesaran. Kita inginnya hasil dari kegiatan budidaya nila ini bisa mendapatkan keuntungan yang lebih dari lele sebelumnya,” kata Rafika.Sejauh yang ia alami ini, Rafika berpendapat semua ibu rumahan atau ibu rumah tangga pastilah bisa melakukan kegiatan budidaya ikan ini. “Selain untuk menambah pendapatan keluarga, pemeliharaan ikan seperti ini dapat juga menghilangkan stres kita sebagai ibu rumah tangga,” ujarnya berkelakar. Makanya, ia pun mendorong teman-teman sejawatnya untuk melakukan usaha seperti ini. Termasuk ibu rumahan seperti dirinya. “Jadi buat ibu-ibu dimana pun anda berada, jangan takut mencoba untuk melakukan kegiatan usaha budidaya ikan di kolam terpal ini. Walaupun terkadang pasti ada kendala di dalam perjalanan usahanya,” tutup Rafika. Artikel Asli : Trobos Aqua ...
Genetics Key to TiLV Resistance
Nila

Genetics Key to TiLV Resistance

A new study has found that resistance to Tilapia Lake Virus (TiLV) appears to be due to differences in genes between families of the same fish, reports Bonnie Waycott.Hopes are high that these results will greatly improve the protection of farmed tilapia stocks. Since its detection in Israel in 2014, Tilapia Lake Virus (TiLV) has ravaged tilapia populations in 16 countries across Asia, Africa and South America, and caused mortalities of up to 90%. Arguably the biggest disease threat to tilapia farming and one of the biggest for global aquaculture, several stages of the tilapia life cycle from fingerlings to adults can be affected. Both wild and farmed fish are susceptible, with clinical signs including behavioural changes, discolouration, loss of scales, skin haemorrhages, open wounds, eyeball protrusion and abdominal swelling. Fish can also be lethargic at the surface or be found gasping.There is currently no cure for viral diseases in aquaculture. Although vaccines and selective breeding have proved successful in reducing the severity of some, there are currently some knowledge gaps relating to TiLV with no effective or affordable vaccines available.Now, a new study published in the journal Aquaculture has found that there is substantial genetic variation in the resistance of tilapia to the virus, with some families showing no mortalities to TiLV and others showing very high mortalities. The finding is offering hope that breeding programmes could be key to tackling one of the worst diseases to hit the global fish farming industry in recent years.With funding from the UK government and through the framework of the CGIAR Research Program on Fish Agri-Food Systems, researchers from the University of Edinburgh's Roslin Institute and WorldFish analysed the genes of Genetically Improved Farmed Tilapia (GIFT), in an attempt to estimate the levels of genetic variation for resistance to TiLV."The Roslin Institute has been working in partnership with WorldFish to improve selective breeding for Nile tilapia, " said Professor Ross Houston, lead author of the study and personal chair of aquaculture genetics at the Roslin Institute."This has included developing genomic tools and looking at new target traits for genetic improvement. One of these traits is disease resistance. In this case, we took advantage of an outbreak in a tilapia pond where many different families of tilapia were affected. Using the data from survivors and mortalities from this outbreak, and how this varies across families, we were able to show that resistance to TiLV is highly heritable."Using data from 1821 pedigreed fish from 124 different families of tilapia collected during and after the pond outbreak, Houston and his team defined resistance using binary survival and days-to-death traits. They were able to record mortality levels because the fish contained electronic tags, which were used to assign individuals to specific families. Using the pedigree for the fish affected by the outbreak, it was also possible to separate how much of the variation in mortality was due to genetics, and how much was due to other reasons such as environmental factors.TiLV resistance highly heritableThe results showed that resistance to TiLV was highly heritable, with about 50-60% of the variation in mortality due to genetics (this is particularly high for a disease resistance trait). Some families of tilapia had zero mortality while others had a 100% death rate, meaning that selective breeding for improved resistance is likely to be highly effective. The team was also able to show that selecting for improved resistance to TiLV is unlikely to have any impact on the growth of the fish and may also benefit farmers' yields. The study also stated that using data from a natural pond outbreak, as opposed to a controlled experiment, better reflected the method of infection in terms of time of exposure and spread within the population.The selective breeding of fish with genes that are resistant to TiLV is said to be one way of limiting the damage of this disease, but there are some technical and legislative barriers to overcome, according to Ross Houston."The technical barriers are related to the fact that a reliable and repeatable TiLV experimental challenge model would be required to maximise the potential for breeding for TiLV resistance," he said."There is a lot of research on developing such challenge models and with some promising results to date, so this is likely to be overcome soon. This would avoid having to rely on pond outbreak data to use for breeding, where it is difficult to predict where and when outbreaks will occur."Genomic tools could also be extremely useful to identify genetic markers that could be used to predict TiLV resistance breeding values, even in the absence of disease challenge data on close relatives, he added.Key farmed speciesNile tilapia are among the key species farmed worldwide today. According to FAO data, the production of tilapia reached around 6.2 million tonnes in 2016. The species is also one of the major sources of animal protein, particularly in developing countries in Asia, South America and Africa and can be farmed under a variety of systems from extensive backyard ponds to large, commercial operations, with little environmental impact. It's also an affordable source of food for many people and a healthy source of nutrients and essential fatty acids.Factors such as these make it all the more important for tilapia producers to consider a host of options to increase the chances of avoiding TiLV. In addition to considering disease resistance and using specific pathogen-free tilapia stocks for breeding programmes, investing in advanced molecular diagnostics will enable farmers to determine whether individuals are virus-free at different stages of the tilapia life cycle. Other key preventive steps include screening live tilapia entering a country as seed or broodstock for aquaculture purposes, contingency plans for possible outbreaks and regular biosecurity audits and disease surveillance programmes.​​"Improvements in biosecurity are always important and this can be related to transparency and communication," said Ross Houston."There is other research that is targeting the development of vaccines, which would also be very useful, but in addition to cost issues they are very difficult to administer to young tilapia which can be badly affected by TiLV. In this sense, genetics and breeding are definitely major opportunities here."Together with WorldFish, the Roslin Institute is part of an ambitious and active research programme where genomic tools are being developed to find genes and markers linked to disease resistance. Hopes are high that the study by both organisations could lead to new opportunities to improve breeding for disease resistance. Further research will also be required to evaluate the genetic architecture of host resistance to TiLV and evaluate the possibility of marker-assisted or genomic selection to expedite the breeding of tilapia strains with improved resistance to the virus, according to the study. "It would be very interesting to find out the reasons underlying why some families are seemingly fully resistant, and others fully susceptible in our study," Ross Houston commented. "This is both scientifically important and also has potential applications to provide new solutions to tackle the disease."Source: World Fishing ...
Using Supplemental Amino Acids to Reduce Dietary Protein Levels of Nile Tilapia Gives Economic and Environmental Benefits
Nila

Using Supplemental Amino Acids to Reduce Dietary Protein Levels of Nile Tilapia Gives Economic and Environmental Benefits

World finfish aquaculture production has been progressively rising, and now accounts for almost 47 percent of total fish production. On a global scale, tilapia are the second most cultivated finfish group, with Nile tilapia (Oreochromis niloticus) accounting for eight percent of total finfish produced in 2016. The species is particularly popular due to its fast‐growing rates, disease resistance, robustness and ability to adapt to different farming systems.In aquaculture, feed accounts for 50 percent of total production cost. A major challenge is to find new strategies for precision diet formulation that minimise feed cost, while increasing sustainability. Feed cost is largely determined by dietary protein sources and inclusion levels.In the past few years, advances in the knowledge of tilapia nutrition, and commercial availability of supplemental amino acids have allowed feed producers to be flexible in utilising plant sources to formulate balanced diets. In addition to enabling industry to implement zero fishmeal diets, supplemental amino acids open windows to reduce the dietary protein levels while balancing the diet for amino acid levels.In the swine and poultry industries, the low protein concept with the use of supplemental amino acids has been a common practice for a long time. In aquaculture, this concept is not as common, and protein quantity is still used as an indicator of diet quality. However, diet quality is rather determined by the protein quality and not quantity.This requires additional attention on quantitative and qualitative amino acid levels. Nile tilapia's response to dietary protein levels has been widely studied and is dependent on fish size/age, dietary amino acid profile and digestibility.Typically, Nile tilapia starter or fry diets contain 45 percent crude protein, while the diet for fingerlings and advanced juveniles' optimal growth performance contain 35 percent crude protein. For adults, 25-30 percent protein is commonly used. Diets with high levels of protein but with an imbalanced amino acid profile will result in increased amino acid catabolism and consequently higher nitrogen losses.Given the production volume of tilapia and the expected growth of aquaculture as a strategy to feed nine billion people by 2050, it is essential to find diets that are cost‐effective and environmentally sustainable.We conducted a study to reduce protein inclusion levels in plant protein‐based diets for juvenile Nile tilapia, through adequate amino acid supplementation, in order to minimise dietary environmental impact while maximising biological efficiency. Furthermore, metabolic trials were performed aiming to obtain an in vivo snapshot of protein utilisation in Nile tilapia juveniles as a function of dietary protein content.Materials and methodsExperimental dietsFive isoenergetic diets were formulated with differing protein levels (36%, 34%, 32%, 30% and 28% diet), using plant ingredients as well as meat and bone meal as protein sources. Diets were formulated to meet the minimum requirements of amino acids, on digestible basis, for Nile tilapia juveniles according to AMINOTilapia (a tool developed by Evonik for the amino acid recommendations of Nile tilapia).Apparent digestibility coefficients (ADC) of amino acids for the ingredients used were taken from our review report (Konnert and Masagounder 2017). Diets were supplemented with increasing levels of selected indispensable amino acids and di‐calcium phosphate with the decreasing levels of dietary protein to avoid amino acid or mineral imbalances.Growth trialNile tilapia juveniles with an average body weight of 5.91 ± 1.66g were used and the experiment was conducted at CCMAR in Portugal.Triplicate tanks were randomly assigned to one of the five dietary treatments (D36, D34, D32, D30 and D28). Fish were fed to visual satiety by hand, three times a day (09:30, 12:30 and 16:30 hours). Water quality parameters were monitored daily: temperature averaged 25.2 ± 0.1°C, dissolved oxygen in water was maintained above 80 percent of saturation, pH was maintained between 7.70 and 8.20 and the concentration of unionised ammonia and nitrites in water was 0 mg/l during the whole experimental period. Fish were monitored daily for any mortality and feed intake was recorded daily for 59 days.Metabolic trialAfter the growth trial, fish from the higher, intermediate and lower protein dietary treatments (D36, D32 and D28) were randomly selected and transferred to the nutrient flux laboratory. The experimental diets were labelled with [U-14C]-L-amino acid mixtureTube-feeding was performed on anesthetised fish, which were then transferred into individual incubation chambers connected to CO2 traps (Rust et al. 1993; Rønnestad et al. 2001). Each chamber was hermetically sealed and supplied with a gentle oxygen flow during the 24 hours of incubation. At the end of the incubation period, each fish was weighed and filleted for determining radioactivity in the muscle.Results and discussionGrowth performance and feed utilisationAll fish had a fivefold increase in body weight at the end of the experiment, independently of the diet, and no significant differences (p > .05) were found at the end of the experiment, with mean values ranging from 29.34 to 31.49g.Fish weight gain was not influenced (p > .05) by the different dietary protein levels. Feed conversion ratio (FCR) increased with decreasing levels of dietary protein but differed significantly (p < .05) only between the group fed D28 (1.30 ± 0.05) and those fed the D36 diet (1.16 ± 0.05). Protein efficiency ratio (PER) increased with decreasing levels of dietary protein; therefore, the D28 group presented the highest PER (2.60 ± 0.09) and the D36 presented the lowest (2.27 ± 0.09).The groups fed D28, D30 and D32 diets exhibited no significant differences among them (p > .05) and were significantly different from the group fed the D36 diet (p < .05). No differences were detected among treatments concerning the daily voluntary feed intake. There were no significant differences (p > .05) in survival among fish fed the experimental diets, which in overall was 98 ± 3 percent.Dietary protein utilisationFish fed the D30 diet exhibited higher body protein retention than those fed the D36 diet (41 vs. 36% of intake, p < .05). The retention of the majority of the amino acids followed a similar pattern to that of protein retention, with fish fed the D30 diet presenting a tendency for higher retention values than those fed the D36 diet.The exception to this trend was methionine, which presented the highest retention in fish fed the D36 diet, although no significant differences were found between the D36 and the D30 treatments (p > .05). This is because as the protein level decreased in the diets from 36 to 28%, cysteine (Cys) level declined from 0.53 to 0.44 percent, which resulted in Met+Cys (1.33-1.35%) being more limiting than Met (0.82-0.89%) per se.Due to the limitation of Cys in the low protein diets, fish more likely used Met as a precursor for Cys production to meet other metabolic needs than for direct protein synthesis, explaining the reduced Met retention in fish fed the low protein diets.Daily nitrogen gain was similar among treatments, but there were significant differences concerning the values of daily nitrogen losses. Fish fed low‐protein diets, D28 and D30, presented the lowest daily nitrogen loss although only significantly different from the D36 group (p < .05).The results of the metabolic trials gave an in vivo snapshot on how dietary protein was being utilised by the fish. The highest values of amino acid catabolism were found for fish fed the D36 diet and the values showed a declining trend as the dietary protein level declined. Mirroring N gain, relative amino acid retention in muscle (mg / g fish) was quite similar among treatments and no significant differences were found.The present work indicates that the excessive dietary protein content ultimately results on the use of amino acids as energy source and consequently on higher environmental impacts, due to increased nitrogen outputs.Conclusions In conclusion, the present study demonstrates that it is possible to reduce protein levels in juvenile Nile tilapia diets to 30-32 percent without compromising fish growth and FCR, while reducing nitrogen losses to the environment. Using appropriate amino acid supplementation in tilapia feed seems an advisable strategy to minimise dietary protein levels, and guarantee economic and environmentally sustainable tilapia production.Source: Aquafeed ...
L-Selenomethionine: a Powerful Antioxidant for Commercial Finfish Aquaculture
Nila

L-Selenomethionine: a Powerful Antioxidant for Commercial Finfish Aquaculture

Trials with tilapia in Thailand show that diets containing L-selenomethionine increase performance and provide high protection against pathogenic pressureIn intensive animal production, high daily weight gain and high feed efficiency are essential. However, high performance is associated with increased levels of stress.Stress – such as from high stocking density, pathogenic pressure and temperature – is associated with enhanced levels of reactive oxygen species (ROS) and linked to sub-optimal antioxidant status. Selenium (Se), in this respect, is a very important essential trace element as it is a vital component of selenoenzymes (eg glutathione peroxidase, GPx) which play a role in reducing ROS and to maintain a healthy antioxidant status. A disruption of this steady state causes tissue damage due to interaction of ROS with lipids, proteins and DNA. These negative interactions reduce their metabolic activity.In order to maintain this steady state a continuous as well as optimal selenium supply is essential. However, this can be difficult to achieve when uptake from the diet is impaired when stress is present. At that moment selenium is in high demand, to produce selenoenzymes and combat ROS. Selenium storage inside the animal, in that respect, would be beneficial. This article provides an overview of the scientific literature on the beneficial effects seen with the addition of L-selenomethionine to the diet and this focussed on salmon, trout and tilapia. Results from a recent trial on tilapia conducted in Thailand are discussed.Maintaining an optimal selenium steady state: a nutritional solutionSelenium can be added to the diet in either inorganic or organic forms (Figure 1). The advantage of using organic selenium (L-selenomethionine, L-SeMet) over inorganic sources (eg sodium selenite or selenate) is its ability to be incorporated directly, without conversion, into general body proteins as a methionine source. L-selenomethionine is the only selenium compound that has this ability. The incorporated selenium, in the form of L-selenomethionine, acts as a storage of selenium in the animal. This stored selenium ensures optimal supply, even during stressful periods.If necessary, the stored selenium gets metabolised to selenide (H2Se) then to de novoselenocysteine (SeCys). This molecule will be incorporated, as the active site, in selenoproteins. Other selenium compounds, such as SeCys and sodium selenite, are not storable but will be metabolised to de novo SeCys. These compounds will be quickly excreted when intake is in excess. L-selenomethionine will only be metabolised to selenide when there is a need. This form is therefore less prone to excretion and toxicity reactions (Rayman, 2004). Figure 1The metabolism of L-selenomethionine and other selenium compounds © Adapted from Rayman, 2004; and Combs, 2001Aquatic protein challenge: a case for L-selenomethionineTraditionally, fishmeal was the preferred protein sources in aquatic feeds. Due to limited availability, pressure on wild fish stocks and variable prices there is an interest in alternative, sustainable protein sources. Plant meals, for example, are suitable alternatives in the growing global aquaculture industry. However, replacing marine ingredients in fish feed with plant sources changes the nutrient composition of the feed. Selenium concentration of fillets is reported to be highly impacted by high levels of substitution, reducing the added value of fish consumption (Lundebye et al. 2017; Betancor et al. 2016).Although selenium levels are decreasing within the fish, the demand for selenium to protect against (oxidative) stress remains. Stressors (eg environmental, metabolic) are an important issue for the productivity and profitability of fish farms. These stressors may cause increased oxidative damage to lipids, proteins and DNA and increased mineral mobilisation from tissues and their subsequent excretion. High stress may therefore lead to increased mineral requirement. L-selenomethionine is established to be a highly available selenium source leading to higher selenium deposition compared to inorganic selenium sources (Figure 2). It can therefore counteract selenium depletion caused by plant-based diets.Figure 2Selenium concentrations in muscle (mg Se/kg dry weight) of Atlantic salmon fed a fishmeal-based diet supplemented with sodium selenite or selenomethionine at levels of 1 and 2 mg Se/kg feed, respectively, for 8 weeks. © Lorentzen et al, 1993Control stress and winDietary selenomethionine supplementation is known to offer a way to reduce performance loss under stress, such as crowding conditions (Küçükbay et al. 2008). A recent study, performed at the Mahasarakham University, Thailand, showed increased performance and high protection against pathogenic pressure. A total of 735 Nile tilapia (initial weight 13.52±0.5g) were fed one of seven experimental diets (in triplicate) in fibreglass tanks for eight weeks. Organic Se (L-selenomethionine, SeMet; Excential Selenium 4000, Orffa Additives BV) and inorganic Se (sodium selenite, Na2SeO3) were each added to the basal diet at 1, 3, and 5mg Se/kg. The basal diet (28 percent crude protein), without Se supplementation, was used as a control.The final Se concentration of the basal diet was 0.68mg Se/kg. Organic and inorganic Se supplemented diets contained 1.78, 3.53 and 4.90mg Se/kg and 1.75, 3.49 and 5.30mg Se/kg, respectively. Fish were fed at 5.0 percent of their body weight twice a day. Parameters were assessed at the end of the rearing period. After eight weeks, 20 fish from each treatment were challenged with intraperitoneal injection of the virulent Streptococcus agalactiae serotype III at 1x107 CFU/mL. The cumulative mortality was observed for 21 days and the relative percent survival (RPS) was calculated.Table 1 shows that weight gain (WG) of fish fed SeMet at 1mg Se/kg was significantly higher than that of fish fed basal diet (p<0.05). Lymphocytes were significantly (p<0.05) higher in fish fed SeMet (1mg Se/kg) compared to fish fed basal diet. Alanine transaminase (ALT), aspartate transaminase (AST), creatinine, blood urea nitrogen (BUN), albumin, globulin and total protein were not significantly influenced by dietary Se supplementation.Increasing dietary Se level, particularly in the form of SeMet, led to a decrease in serum cholesterol concentrations. Interestingly, the innate immune response (eg lysozyme, catalase, myeloperoxidase, superoxide dismutase and glutathione peroxidase) activity was significantly (p<0.05) increased with Se supplementation compared to the basal diet group, especially for fish fed SeMet (1 and 3mg/Se kg). Malondialdehyde (MDA) in fish serum, on the other hand, was decreased numerically for all supplementation levels. Fish fed SeMet (1mg Se/kg) showed the highest RPS after the challenge with S. agalactiae.Table 1Growth performance, haematological values and immune parameters of fish fed experimental diets. Note: Values show mean, pooled SEM, n = 90; S= L-SeMet (Excential Selenium 4000) and sodium selenite (Na2SeO3), L=level of selenium supplementation. Values in the same row with different letters differ significantly (p < 0.05). White blood cells (WBC), alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN), malondialdehyde (MDA), relative percent survival (RPS).ConclusionsL-selenomethionine (Excential Selenium 4000) was tested and validated by independent researchers around the world in peer-reviewed publications (eg Berntssen et al. 2018; Silva et al. 2019) and proven to be effective in increasing the selenium and antioxidant status of fish, even under challenging conditions. This will result in improved performance and immune function. Very high levels of L-selenomethionine (5 mg Se/kg feed) do not appear to have negative effects on performance nor on immune parameters. L-selenomethionine therefore has a good application in fish diets when fish are kept under stressful conditions or in any diets where fishmeal is replaced by plant meals. L-selenomethionine helps to maintain selenium concentration in fish fillets and therefore contributes to the positive healthy image of fish consumption for humans.Source: The Fish Site ...
Perbedaan Ikan Nila dan Mujair Secara Umum
Nila

Perbedaan Ikan Nila dan Mujair Secara Umum

Siapa sih yang tidak tau ikan nila dan ikan mujair? Sebagai jenis ikan konsumsi yang banyak dicari dan salah satu ikan paling laris di pasaran. Sehingga banyak sekali yang sudah melakukan budidaya ikan konsumsi tersebut untuk usaha dan bisnis. Tak hanya di Jawa, akan tetapi sampai saat ini jenis nila yang berada di jati luhur menjadi sorotan para penikmat kuliner untuk dapat menikmati aneka olahan ikan konsumsi ini. Tingginya permintaan membuat banyak masyarakat yang ingin membudidayakan kedua jenis ikan ini. Namun Anda perlu mengetahui perbedaan yang terdapat pada kedua komoditas ini agar tidak salah membudidayakan jenis ikan.Berikut beberapa perbedaan ikan nila dan mujairyang dapat Anda baca. Beberapa Perbedaan Ikan Nila dan Mujair yang Hampir MiripBaca juga: Cara Mudah Memilih Bibit dan Indukan Ikan Nila Ikan Nila dan Mujair Secara Kasat MataJika dilihat sekilas, hampir tidak ada perbedaan antara ikan nila dan ikan mujair, karena secara klasifikasi pun keduanya masih termasuk ke dalam genus yang sama. Hal tersebut membuat kedua komoditas ini semakin sulit untuk dibedakan. Jika ingin menemukan perbedaan antara keduanya, Anda perlu melihat lebih lama dan mengetahui ciri khas dari masing-masing ikan. Hal ini akan menjadi agak sulit untuk pemula yang jarang melihat kedua jenis ikan ini sehari-hari, sehingga mudah mengalami kekeliruan. Untuk bisa mengetahui nila dan mujair secara detail dan tidak keliru sebetulnya sangat mudah, seperti kita mengetahui perbedaan ikan nila dan ikan mas, dan juga perbedaan ikan mujair dan gurame sebagai ikan konsumsi.Baca juga: Pentingnya Seleksi pada Pembenihan Nila Klasifikasi Morfologi Ikan Nila dan MujairIkan mujair dan ikan nila termasuk ke dalam genus Oreochormis . Tinggi dan panjang tubuh keduanya sama persis. Selain itu juga keduai ikan ini memiliki bentuk kepala yang besar, bermulut lebar serta bentuk mulut agak tebal, dan juga mempunyai sisik yang kasar sekaligus besar. Kedua ikan ini memiliki sirip punggung dan sirip anal yang tajam, sehingga Anda perlu berhati-hati ketika akan mengambil ikan ini dengan tangan. Disarankan menggunakan sarung tangan tebal saat akan memegang ikan ini secara langsung. Dasar Perbedaan Ikan Nila dan Mujair Pada bagian punggung dan sirip ekor kedua ikan konsumsi ini dapat Anda lihat, yaitu terdapat beberapa garis-garis. Untuk ikan nila, dapat Anda ketahui dengan melihat ciri-ciri pada bagian sirip ekornya ada garis berwarna hitam tegak lurus, pada bagian sirip punggungnya terdapat garis berwarna hitam yang melintang lurus. Sedangkan untuk ikan mujair pada bagian sirip punggungnya tidak terlihat garis-garis. Postur tubuhnya juga akan terlihat berbeda.  Untuk ikan nila berbadan gemuk, berdaging, dan gempal. Untuk pertumbuhannya juga cepat ikan nila dibandingkan ikan mujair yang agak lambat. Demikian inilah sedikit ulasan tentang perbedaan ikan nila dan mujair secara umum, semoga bermanfaat dan dapat menambah pengetahuan akan masalah perikanan.Sumber: Infoikan.comMinapoli adalah Marketplace Akuakultur Indonesia No. 1 yang membantu anda menemukan berbagai kebutuhan informasi dan produk budidaya ikan anda. Temukan berbagai produk akuakultur di Pasarmina, info lainnya seputar akuakultur di Infomina, dan event perikanan terdekat di Eventmina  ...
Tips Membuat Bioflok untuk Budidaya Nila
Nila

Tips Membuat Bioflok untuk Budidaya Nila

Budidaya ramah lingkungan dan berkelanjutan saat ini banyak digandrungi masyarakat. Salah satunya adalah budidaya yang memanfaatkan inovasi teknologi  bioflok. Teknologi ini umumnya diaplikasi pada budidaya lele. Kemudian juga ada budidaya nila bioflok yang baru-baru ini dikembangkan Balai Besar Perikanan Budidaya Air Tawar (BBPBAT) Sukabumi, Jawa Barat (Jabar).Budidaya nila bioflok tersebut hingga kini banyak diminati masyarakat. Pasalnya, budidaya nila bioflok tak menimbulkan bau, dan secara ekonomi hasilnya menggiurkan.Banyak orang mengira kalau budidaya nila bioflok yang sudah diaplikasi masyarakat itu rumit. Namun menurut Penanggungjawab Budidaya Nila Bioflok BBPBAT Sukabumi, Fatihul Muharis, budidaya nila bioflok konsepnya sangat sederhana dan mudah diaplikasi masyarakat." Kunci sukses budidaya ini adalah benih nila unggul yang sehat dan flok sebagai sumber bahan pakan tambahan bagi ikan, wadah budidaya (bak), pakan pellet dan air secukupnya," kata Fatihul, di Sukabumi, Kamis (5/3).Lantas apakah masyarakat bisa membuat bioflok sendiri? Menurut Fatih (panggilan akrab Fatihul), sangat bisa. " Karena bahan-bahannya mudah didapatkan. Yang paling penting adalah tepat takaranya," ujar Fatih.Temukan Benih Nila Unggul Disini!Inilah bahan-bahan yang diperlukan untuk membuat bioflok, antara lain:- Garam krosok sebanyak 1 kg per meter kubik.- Kapur dolomit (kapur pertanian) 50 gram per meter kubik.- Molase sebanyak 100 ml/m3. Kalau tak ada molase bisa menggunakan gula pasir sebanyak 50 gram per meter kubik.- Probiotik yang ada kandungan bacilus. Probiotik ini bisa dibeli di toko pertanian.Beli Produk Probiotik Kolam BioflokMenurut Fatih, bahan-bahan tersebut kemudian dimasukkan dalam wadah budidaya (bak) berdiameter 4 meter yang sudah diisi air secukupnya. Setelah didiamkan selama 4-7  hari benih nila siap ditebar dalam wadah tersebut." Untuk mengembangkan bioflok di bak, pembudidaya juga bisa mengambil biang dari bioflok yang sudah ada di bak budidaya lainnya," paparnya.Meski bioflok menjadi sumber bahan pakan ikan, lanjut Fatih, pembudidaya harus tetap rajin memberi pakan dengan pellet secukupnya dua kali sehari. " Karena padat tebarnya tinggi, sehingga harus ada asupan pakan pellet," ujarnya. Nah, tertarik membuat bioflok sendiri. Silakan mencoba tips di atas. Semoga bermanfaat.Sumber : Tabloid Sinar Tani ...
Budidaya Ikan Nila dengan Teknologi Bioflok
Nila

Budidaya Ikan Nila dengan Teknologi Bioflok

Ikan nila bisa menjadi salah satu komoditas air tawar potensial dikembangkan di Indonesia, karena nila bisa bertahan dari perubahan lingkungan, tumbuh dengan cepat, dan lebih resisten terhadap penyakit.Keunggulan tersebut menjadi kombinasi yang tepat dan pas untuk memicu produksi ikan nila secara nasional. Terlebih lagi, ikan nila semakin diminati masyarakat sehingga meningkatkan permintaan pasar yang tinggi. Konsumen penyuka nila tidak hanya dari dalam negeri, tetapi juga dari luar negeri.Direktur Jenderal Perikanan Budidaya (DJBP-KKP) Slamet Soebjakto pernah mengatakan, bahwa komoditas ekspor ikan nila terutama untuk ke Amerika Serikat dalam bentuk fillet. Oleh karena itu, produktivitasnya harus dipacu terus menerus.Baca juga: Tips Membuat Bioflok untuk Budidaya NilaMelihat keunggulan dan keuntungan penggunaan teknologi bioflok, Slamet mendorong penguasaan dan penggunaan teknologi tersebut bisa semakin meluas ke berbagai pelosok Nusantara. Penyebaran teknologi tersebut salah satunya bakal dilakukan unit pelaksana teknis (UPT) Ditjen Perikanan Budi daya.Pelibatan UPT untuk penyebaran bioflok ke seluruh daerah, menurut Slamet, agar teknologi tersebut bisa tepat guna dan tidak keliru dalam penerapannya. Dengan kata lain, teknologi bioflok akan terasa keunggulan dan keuntungannya, jika mengikuti kaidah cara budi daya ikan yang baik.“Seperti penggunaan benih unggul, pakan sesuai SNI (standar nasional Indonesia), serta pemantauan kualitas air budidaya,” jelasnya.Slamet meyakini teknologi ini mampu menyediakan sumber protein dengan harga yang terjangkau oleh masyarakat. Teknologi bioflok mampu menyediakan dua hal sekaligus, yaitu program perbaikan gizi dan penyediaan lapangan pekerjaan bagi masyarakat.Salah satu daerah yang menerapkan bioflok untuk ikan nila, adalah Kabupaten Sukabumi, Jawa Barat, melalui ada kelompok pembudidaya ikan (Pokdakan) Indra Makmur. Menurut Ketua Pokdakan Indra Makmur Syamsul Bahari, dengan bioflok, ikan nila yang dihasilkan lebih gemuk dan kandungan air dalam daging lebih sedikit.Baca juga: Sistem Bioflok, Teknologi Budidaya Baru untuk Ikan NilaKeuntungan Budidaya Ikan Nila Bioflok                                                Teknologi mutakhir bioflok digunakan dalambudi daya ikan nila. Ikan nila dipilih karena kelebihannya, seperti adaptif terhadap perubahan iklimTeknologi bioflok menjadi pilihan tepat untuk nila, karena menghemat biaya operasional dari efisiensi pakan, lebih hemat penggunaan air sehingga lebih ramah lingkungan dan sesuai prinsip berkelanjutanEfisien pakan, terlihat dari nilai FCR yang rendah yaitu 1,05 dibanding budidaya konvensional dengan nilai 1,5. Artinya jika ingin menghasilkan ikan nila 1 kg, hanya diperlukan 1,05 kg pakan sajaDi Indonesia, penggunaan teknologi bioflok untuk budidaya, terutama nila masih belum merata. Untuk itu, Pemerintah menugaskan UPT di bawah Ditjen Perikanan Budidaya KKP untuk mengawal agar penggunaan teknologi tersebut bisa tepat guna dan tidak keliru dalam penerapannyaPrinsip keberlanjutan yang dianut teknologi bioflok untuk perikanan budidaya, dinilai sudah memberikan banyak keuntungan bagi pengembangan budi daya ikan. Teknologi ini meningkatkan jumlah produksi, sekaligus menggenjot pendapatan pembudidaya secara signifikan. Komoditas yang berhasil dikembangkan dengan teknologi bioflok, salah satunya adalah ikan nila.Slamet menjelaskan pengembangan teknologi bioflok untuk budidaya ikan nila semakin dirasakan manfaatnya oleh pembudidaya ikan. Salah satunya, karena berhasil meningkatkan kelangsungan hidup ikan nila secara signifikan.Baca juga: Manfaat Berlipat dari Budidaya Nila Sistem Bioflok“Itu meningkat signifikan. Untuk kelangsungan hidup atau survival rate ikan nila dengan teknologi bioflok sudah berhasil mencapai angka 90 persen,” ungkap Slamet.Keunggulan lainnya, menurut Slamet, adalah tingkat penggunaan pakan menjadi semakin efisien, dan nilai feed conversion ratio (FCR) juga semakin rendah menjadi 1,05. Angka tersebut menunjukkan, jika pembudi daya ingin menghasilkan ikan nila sebanyak 1 kilogram, maka dibutuhkan pakan sebanyak 1,05 kg.Angka FCR terkini itu, kata Slamet, menurun drastis jika dibandingkan dengan pemeliharaan di kolam biasa, dengan nilai FCR bisa mencapai 1,5. FCR merupakan perbandingan berat pakan dengan berat total (biomass) ikan dalam satu siklus periode budi daya. Semakin turun angka FCR, maka semakin baik kualitas dan produksi budi daya yang dihasilkan.Teknologi bioflok pada budi daya ikan nila juga terbukti meningkatkan kepadatan dalam kolam. Jika menggunakan sistem konvensional, kepadatan maksimal hanya 10 ekor ikan nila/meter kubik, maka dengan menggunakan bioflok kepadatan menjadi 100 ekor/meter kubik.Menurut Slamet, keberhasilan yang sudah dicapai tersebut, semakin menguatkan bahwa pengembangan budi daya nila dengan sistem bioflok menjadi salah satu terobosan untuk meningkatkan produksi nila secara nasional. Teknologi tersebut diyakini bisa meningkatkan pendapatan pembudi daya secara signifikan dan tetap mengutamakan prinsip keberlanjutan. “Penerapan teknologi ini terbukti efektif dan efisien dalam penggunaan sumber daya air dan lahan serta adaptif terhadap perubahan iklim,” tuturnya.Artikel Asli: Info Akuakultur Tentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
Bisakah Nila Jantan Alami Mengatasi Penyakit Baru?
Nila

Bisakah Nila Jantan Alami Mengatasi Penyakit Baru?

Ikan nila yang belum diobati dengan hormon tampaknya lebih kuat terhadap penyakit seperti Tilapia Lake Virus (TiLV), memperkuat alasan untuk menggunakan jantan yang diproduksi melalui cara alami.Ikan nila adalah salah satu ikan yang paling banyak dibudidayakan di dunia - dengan jumlah produksi dunia sebesar 6,3 juta ton (senilai sekitar US $ 9 miliar) di tahun 2018. Dari tahun 2010 hingga 2016, volume produksi melonjak sebesar 68 % - sebuah ekspansi yang telah membawa banyak peluang tetapi juga beberapa yang tantangan serius. Selama lima tahun terakhir, sejumlah virus dan patogen lainnya telah mendatangkan malapetaka pada sektor nila, sebagaimana dilaporkan The Fish Site baru-baru ini.Salah satu penyakit mewabah pada budidaya ikan nila adalah Tilapia Lake Virus (TiLV), yang ditemukan pada tahun 2014. Virus ini dapat menyebabkan kematian hingga 90 %. Sampai awal tahun ini diperkirakan bahwa virus hanya menyebar di antara ikan yang dibudidayakan di kolam yang sama yang disebarkan antar ikan budidaya, tetapi bukti baru menunjukkan bahwa virus itu juga dapat ditularkan dari induk ke telur lalu benih. Para ahli telah memperingatkan bahwa dampak sosial dan ekonomi mungkin terjadi jika virus terus menyebabkan kematian massal pada stok nila.Baca juga: Study Tests Autogenous Vaccine to Protect Nile TilapiaWorldFish, salah satu promotor utama pembudidaya nila, telah memprioritaskan penelitian untuk menentukan penyebabnya. Sejauh ini telah disimpulkan bahwa, dalam kasus-kasus kematian yang terjadi di Mesir, di mana sekitar 35 % pembudidaya telah menderita akibat tingkat kematian yang tinggi karena wabah penyakit yang terjadi terus-menerus, dapat dikaitkan dengan berbagai alasan, termasuk kualitas air, suhu, kepadatan di panen, kurangnya biosekuriti dan praktik manajemen yang buruk. WorldFish mengakui bahwa ada kebutuhan mendesak untuk lebih memahami interaksi antara patogen dan komponen.Saat ini pembudidaya disarankan untuk memerangi TiLV dan wabah penyakit lainnya dengan meningkatkan biosekuriti, dengan lebih ketat menyaring induk dan bibit yang baru diperoleh, dan dengan mengurangi kondisi yang berpotensi menimbulkan stres di lahan budidaya. Namun, sedikit perhatian telah diberikan untuk menentukan dan menyelesaikan akar penyebab peningkatan kejadian wabah penyakit ini.Salah satu faktor risiko utama untuk TiLV, seperti yang diduga oleh Organisasi Dunia untuk Kesehatan Hewan (OIE), adalah stres. Namun, mereka juga menunjukkan bahwa beberapa jenis nila alami yang semuanya jantan tampak tidak terpengaruh oleh virus ini. Mengapa ini bisa terjadi?Baca juga: Sodium Bicarbonate - Safe Anesthetic for Red Tilapia Akar permasalahanSemakin banyak ilmuwan percaya bahwa menggunakan testosteron (atau produk hormonal lainnya), penggunaan bahan kimia dan obat-obatan hewan dalam jumlah besar, dan perkawinan sedarah, adalah tiga penyebab utama TiLV yang harus dibenahi.Efek Penggunaan Hormon pada Ikan dan Lingkungan Populasi nila dengan jenis kelamin jantan lebih disukai oleh pembudidaya, karena memiliki tingkat pertumbuhan yang lebih tinggi dan ikan yang lebih seragam. Proses perubahan jenis kelamin di ikan tidak berlangsung seperti mamalia; banyak ikan memiliki kemungkinan untuk mengubah jenis kelamin mereka. Pada ikan nila, proses ini dilakukan dengan aplikasi hormon pada stadia benih. Benih diberikan hormon dengan cara mencampurkannya ke pakan atau ke dalam air. Pemberian hormon akan merangsang perubahan jenis kelamin secara instan. Meskipun bermacam-macam hormon digunakan, hormon yang paling umum adalah digunakan adalah metil-testosteron.Abo-Al-Ela (2018) baru-baru ini memberikan tinjauan menyeluruh tentang masalah yang terkait dengan penggunaan steroid dalam akuakultur, termasuk efeknya terhadap pekerja kolam yang terpapar, kontaminasi residu pada aliran air, efek genotoksik dan penekan sistem kekebalan tubuh ikan.Seperti dijelaskan Abo-Al-Ela, metil-testosteron merupakan pengganggu endokrin yang kuat dan diketahui menyebabkan efek genotoksik pada limfosit manusia, yang membantu mengatur sistem kekebalan tubuh. Di Mesir, para peneliti baru-baru ini menunjukkan bahwa nila yang diobati dengan hormon memiliki kadar limfosit dan sel darah putih yang rendah, sel-sel yang memainkan peran penting dalam menekan dan memerangi penyakit.Cegah Penyakit Pada Ikan dengan Vaksin DisiniPenelitian serupa pada salmon Chinook menunjukkan bahwa ikan yang diobati dengan testosteron menunjukkan penurunan signifikan dalam sel-sel yang memproduksi antibodi. Dampak imunosupresi yang disebabkan oleh aplikasi steroid lebih berkurang di musim dingin dan meningkat di musim semi, yang mungkin menjelaskan pola musiman wabah penyakit yang juga terlihat untuk nila.Topik yang berkaitan dengan genotoksisitas hormon dan bahan kimia,serta antibiotik dalam kegiatan budidaya kurang mendapat perhatian. Genotoksisitas adalah kemampuan agen kimia untuk merusak informasi genetik dari sel, menyebabkan mutasi yang dapat menyebabkan kanker. Perubahan permanen ini dapat diteruskan dari satu generasi ke generasi ikan selanjutnya.Sebuah penelitian baru-baru ini tentang paparan ikan terhadap antibiotik (termasuk paparan jangka pendek dengan konsentrasi rendah yang sering dipakai dalam budidaya), mengungkapkan kerusakan signifikan pada DNA ikan (Botelho et al. 2015). Meskipun organisme umumnya dapat memperbaiki DNA yang rusak, beberapa kerusakan kemungkinan besar bersifat permanen dan dapat diturunkan ke generasi nila yang akan datang.Masalah lain yang kurang banyak mendapat perhatian adalah kurangnya keragaman genetik pada strain nila yang dibudidayakan, ditambah hilangnya keragaman genetik dalam akuakultur dan stok ikan liar secara umum. Dengan menggunakan stok yang sama untuk pemuliaan dari satu generasi ke generasi berikutnya tanpa mengikuti program pemuliaan yang baik, sebagaimana sering terjadi pada budidaya nila, perkawinan sedarah sering terjadi dan jumlah variasi genetik yang ada pada populasi ikan berkurang. Beberapa varian genetik ini mungkin mendukung resistensi penyakit, sementara yang lain mungkin membuat ikan lebih mudah beradaptasi terhadap perubahan iklim atau situasi lainnya.Mempertahankan keragaman genetik sangat penting. Sebuah studi yang mengkarakterisasi struktur genetik dari strain nila yang diperkenalkan di Tanzania menunjukkan penurunan yang signifikan keragaman genetik sebagian besar pada nila yang dibudidayakan secara lokal. Hasil studi menyimpulkan bahwa efek dari perkawinan yang masih dalam satu generasi dan konsekuensi penurunan keragaman genetik akan berdampak pada pembudidaya yang memproduksi dalam jumlah kecil, yang cenderung memiliki sedikit pengetahuan mengenai  pemuliaan ikan dan sedikit kemampuan untuk memenuhi kebutuhan induk baruJika hubungan antara pengurangan keanekaragaman genetik dan berkurangnya efektivitas sistem kekebalan ikan nila terbukti, maka negara-negara berkembang dan petani kecil akan terkena dampak paling keras.Baca juga: Genetics Key to TiLV ResistanceSolusiEric Bink adalah pembudidaya ikan Belanda yang sangat percaya pada cara alternatif yang berkelanjutan untuk budidaya ikan nila. Eric telah lama memiliki minat dalam produksi ikan budidaya, hingga mengambil studi ekologi perairan. “Saya tertarik pada produksi ikan tanpa intervensi buatan, menggunakan siklus pemijahan alami dan memanipulasi cahaya dan suhu dengan hati-hati. Saya ingin mengembangkan sistem budidaya ikan yang sepenuhnya berbeda jauh dengan cara-cara yang ada pada salmon (injeksi hormon), lele (hormon dan mengeluarkan bagian testis) dan udang (ablasi tangkai mata). "Selama kunjungan ke Mombasa di mana istrinya menyelesaikan gelar dokter hewan, ia mengunjungi tempat pembenihan nila dan melihat peluang untuk memulai pembenihan sendiri di Belanda. "Budidaya kami tidak menggunakan hormon untuk pengubahan jenis kelamin. Sebagai gantinya kami menerapkan ilmu genetika ikan yang dikombinasikan dengan seleksi genetik, dikenal juga sebagai teknologi YY. ”Lebih dari 20 tahun telah berlalu dan Til-Aqua telah menjadi pemain terkemuka dalam produksi pembenihan jantan YY, dan nila jantan alami (jantan XY, keturunan jantan YY), merek dagang yang digunakan oleh perusahaan itu.Singkatnya, teknologi YY menggunakan seleksi genetik untuk menghasilkan ikan jantan tanpa menggunakan hormon atau bahan kimia lainnya.Perusahaan hanya menggunakan seleksi genetik dan perubahan suhu yang hati-hati pada hari-hari pertama setelah menetas untuk mengubah jenis kelamin ikan dari jantan ke betina. Produk akhirnya adalah ikan jantan dengan kromosom XY normal. Ini berbeda dengan perlakuan hormon pada nila, dimana 50 % ikan jantan secara genetik masih betina dan memiliki kromosom XX.Pengembangan Garis Keturunan YY diBink dan timnya telah menyempurnakan teknologi ini selama 20 tahun terakhir dan telah mengembangkan dua garis induk kuat yang mereka jual baik sebagai bibit (nila jantan alami) dan induk (induk YY). Nila jantan liar mencapai lebih dari 800 gram, menjadikannya ideal untuk fillet atau ikan utuh, sementara nila jantan merah alami mereka dijual secara utuh dan tumbuh sangat baik pada air payau dan air laut.Perusahaan ini juga menyediakan program pelatihan yang dibuat khusus, yang berhasil membantu perusahaan-perusahaan di seluruh dunia, khususnya di Afrika dan Amerika Selatan.Bink menjelaskan bahwa mereka telah bekerja keras untuk mempertahankan keragaman genetik dari strain mereka dengan menghindari inbreeding "Cara kami memijahkan ikan nila dengan dua garis O. niloticus yang berbeda (garis YY dan garis betina) menunjukkan efek heterosis," jelasnya.Dikenal dengan istilah hybrid vigour (kekuatan hibrida), fenomena ini terjadi ketika dua garis pemuliaan disilangkan, hibrida yang dihasilkan lebih kuat dan produktif dari pada induk aslinya.Baca juga: Why Biosecurity is The Best Defence Against Tilapia Lake VirusTidak mengherankan, sebuah penelitian yang menentukan keragaman genetik pada strain nila menilai strain perak Til-Aqua sebagai strain yang paling beragam secara genetik.Beberapa peneliti juga telah menggunakan galur pengembangbiakan Til-Aqua untuk percobaan dengan virus TiLV dan penyakit lainnya, diperoleh hasil yang sangat baik. Meskipun tidak semua hasil konklusif, bahkan OIE mencatat tentang penyakit TiLV bahwa: “Ada bukti bahwa strain genetik nila tertentu tahan. Ferguson et al. (2014) mencatat bahwa satu jenis nila (nila jantan secara genetik) mengalami tingkat kematian yang secara signifikan lebih rendah (10-20 %) dibandingkan dengan jenis lainnya. ”Makalah yang disebutkan oleh OIE berpendapat bahwa penyebab yang paling mungkin untuk hal ini adalah susunan genetik ikan atau fakta bahwa mereka belum pernah diberi perlakuan dengan metil testosteron di awal kehidupan. Apa pun itu, hal ini menunjukkan ada solusi bagi pembudidaya. Sejalan dengan temuan ini, Bink dan timnya berharap untuk mengembangkan YY-line yang tahan terhadap TiLV di masa depan.“Sayangnya perusahaan kami tidak mampu menjalankan proyek yang begitu lama dan mahal saat ini. Tapi kami jelas sangat terbuka untuk kolaborasi, ”jelasnya.Beli Sekarang!Perkembangan masa depanUntuk mengembalikan sektor nila ke arah yang lebih baik, resistensi unik nila Til-Aqua terhadap TiLV harus dipahami dengan lebih dalam. Untuk itu, penelitian lebih lanjut harus dilakukan untuk memastikan hubungan antara penggunaan hormon dan efek jangka panjang pada respon imun ikan. Hal yang sama berlaku untuk seleksi genetik dan efek genotoksik dari obat-obatan hewan dan bahan kimia lain yang digunakan dalam budidaya.Taruhannya tinggi karena kehidupan dan mata pencaharian jutaan orang di negara berkembang berisiko. Penelitian kolaboratif, inklusif, dan transparan sangat penting untuk menghentikan penyebaran virus lebih lanjut.Di saat yang bersamaan, perlunya perhatian lebih pada seleksi genetik dan penggunaan program pemuliaan untuk memelihara dan meningkatkan keanekaragaman genetik ikan. Menggunakan teknik genomik untuk menentukan keragaman genetik akan sangat penting untuk tujuan ini. Namun, seperti yang ditunjukkan oleh temuan dalam artikel ini, diperlukan pendekatan pencegahan - penggunaan hormon harus dipertanyakan secara serius, sementara penggunaan seleksi genetik untuk produksi alami semua ikan jantan harus ditanggapi secara serius sebagai alternatif yang paling berkelanjutan.Diterjemahkan oleh Tim MinapoliSumber : The Fish SiteTentang MinapoliMinapoli merupakan marketplace++ akuakultur no. 1 di Indonesia dan juga sebagai platform jaringan informasi dan bisnis perikanan budidaya terintegrasi, sehingga pembudidaya dapat menemukan seluruh kebutuhan budidaya disini. Platform ini hadir untuk berkontribusi dan menjadi salah satu solusi dalam perkembangan industri perikanan budidaya. Bentuk dukungan Minapoli untuk industri akuakultur adalah dengan menghadirkan tiga fitur utama yang dapat digunakan oleh seluruh pelaku budidaya yaitu Pasarmina, Infomina, dan Eventmina.  ...
The Use of Tilapia Skin in Medicine
Nila

The Use of Tilapia Skin in Medicine

The aquaculture industry is booming, it is the food industry of the future and it is not hard to see why. Being able to maximize the growth rate and select the best breeds of fish and other aquatic organisms is a huge benefit. It is taking the world by storm and soon enough (some estimates say as early as 2050) most of our seafood will come from aquaculture. In 1990 aquaculture only produced 20 million tonnes, in contrast, aquaculture in 2016 produced 130 million tonnes, and this trend is only expected to continue.  With the industry on the rise and the Tilapia sector of that industry poised and primed to lead the charge it begs the question of what other uses can aquaculture find rather than food? Naturally, Tilapia is an incredibly healthy product being extremely high in protein and vitamin B12 which is known to reduce the risks of many diseases and health conditions. The marketers, suppliers, and producers should all focus on this fact more, something missed by us on the consumer end! The Tilapia industry is leading the way in finding innovative methods and providing the highest quality products, in recent years it has also started to lead the way into the medicinal sector. This is an unexploited market from most aquaculture, the only other thing that comes close to it on a commercial scale is Cod oil and Omega-3 and Omega-6 supplements. Burn Victims Brazil is at the forefront of the new innovative methods in the medical market with a revolutionary new treatment aimed at curing burn victims. Dr. Marcelo Borges and his team have made a remarkable discovery that the skin from tilapia is incredibly effective when it comes to xenografts: where the donor for a skin graft is of a different species to that of the recipient. This is the main method of treatment when it comes to severe burns. First, let's cover why tilapia is so useful and then why you want to get involved. Xenografts are not uncommon, normally derived from bovine, pigs and chickens, however, these terrestrial animals carry with them an innate risk of disease transfer, whereas Tilapia being an aquatic animal has a far lower risk of carrying compatible diseases. Tilapia is incredibly useful for this fact plus the structure is very similar to that of human skin and it has a very high type 1 collagen content, two times the amount found in human skin. Collagen is a natural polymer used in pharmaceutical products and supplements due to its ability to promote healing. The normal treatment used when a medical facility doesn’t have access to grafts of any kind is to use gauze and bandaging, the problem with this is every 2 days the dressing needs to be changed and this is often at the cost of great pain to the patient. Tilapia skin however only needs to be changed every 10 days minimum, and in a lot of case studies, it was not changed at all. This due to its amazing ability to retain moisture for longer than any type of bandage and dressing, not only keeping the wound sealed longer but also reducing the pain and suffering of the patients. So, we know that it eases the pain, we know that it promotes healing, we know that it is anti-infectious and the final point about why tilapia is so good for burn treatments is that it costs 25% the normal price of graft or polyurethane foam treatment. This is a massive step forward, especially in developing countries such as Brazil where this is proving to be such a huge success. A place where not everyone can afford treatment or the necessary materials are not always present, tilapia can show up and become the savior to many. Therefore, you want to use your tilapia in projects just like these. It is estimated that the use of tilapia skin in developing countries could save 180,000 lives per year, so not is it only an incredible public relations opportunity, but you are also making extra profit. Most of the tilapia that is grown is used to make frozen fillets that are shipped off to various countries, this means that mainly the skin and other collagen-rich “waste products” are just thrown away. With this being the case, you would not have to grow any more tilapia rather than just utilize what you consider to be the waste products anyway and contribute to the local medical research and make more money… this is a win-win situation. While at the moment, the demand for tilapia skin is not global, with the success and research rate in place it will not belong. This industry is ready to undergo massive and rapid expansion. It’d pay well to be next to the doors when they open. Other uses 1.       While tilapia skin is very good for burns it also has a multitude of other uses. 2.       Marine peptides from Tilapia have been combined with a very hardy material called Chitosan (derived from chitin) to create a new type of artificial bandage. In recent tests and experiments, this bandage type has been shown to have anti-microbial properties and encourages cell proliferation and migration, speeding up the healing process by significant margins. 3.       Other researchers are showing how effective tilapia skin is in creating a scaffolding to encourage the grown of cells around various parts of the body. This has profound consequences for the treatment of those with malformations. 4.       Lastly, type 1 collagen collected from tilapia skin cells have been shown to induce human stem cell differentiation into osteoblasts. These are the cells that make up the oral cavity. Not only does it promote growth but is two times better at attachment and the paper states that tilapia is “an underutilized resource, [which] holds promise as scaffolding the material in the application of tissue engineering in [the] dental field”. Conclusion To summarize, it would be well worth the while of producers to be well aware of the changing medical market and how tilapia-based products are the next big thing in line. Providing cheap, affordable and plentiful medical needs to those who need it most would not only shine the political spotlight on the tilapia industry (providing free advertisement and exposure) but also lends itself to successful advertisement campaigns and increased profits from selling what is now regarded as “waste”.Source: Tilapia Market ...
Can Natural Male Tilapia Tackle Emerging Diseases?
Nila

Can Natural Male Tilapia Tackle Emerging Diseases?

Tilapia that have not been treated with hormones appear to be more robust against diseases such as tilapia lake virus, strengthening the argument to use males produced via more natural means.Tilapia are among the world’s most farmed finfish – with 6.3 million tonnes (worth the estimated US $9 billion) – produced in 2018. From 2010 to 2016 production volumes leapt by an impressive 68 per cent – an expansion that has brought numerous opportunities but also some serious challenges. Over the past five years, a number of viruses and other pathogens have been wreaking havoc on the tilapia sector, as recently reported on The Fish Site.One of Til Aqua's silver tilapia brood fish © Til AquaOne of the main culprits is tilapia lake virus (TiLV), which was discovered in 2014 and causes up to 90 per cent mortalities. Until earlier this year it was thought that the virus only spreads between fish cultured in the same ponds via direct horizontal transmission, but new evidence suggests that it may also be transmitted vertically from broodstock to their eggs, fry and fingerlings, making the situation even more dire. Experts have warned that a social and economic catastrophe might transpire if the virus continues to wipe out tilapia stocks.WorldFish, one of the main promotors of tilapia farming, is prioritising research to determine causes. So far it has concluded that, in the case of Egypt – where around 35 per cent of farms have been suffering high mortality rates due to continued disease outbreaks – the deaths can be attributed to a variety of reasons, including water quality, temperature, density at harvest, lack of biosecurity and poor management practices. WorldFish admits that there is a pressing need to better understand the interactions between pathogens and components.At the moment farmers are advised to combat TiLV and other disease outbreaks by increasing biosecurity, by more stringently screening newly acquired broodstock and fingerlings, and by decreasing potentially stress-inducing situations on their farms. However, scant attention has been given to determine and resolve the root causes of the increased occurrence of these disease outbreaks.One of the main risk factors for TiLV, as suspected by the World Organisation for Animal Health (OIE), is stress. However, they also point out that some natural all-male strains of tilapia seem to be mostly unaffected by the virus. Why might this be the case?Root causesIncreasing numbers of scientists believe that using testosterone or other hormonal products to stimulate sex-reversal and create all-male fry, the side effects of using large amounts of chemicals and veterinary drugs, and inbreeding, are three of the main root causes of TiLV that must be addressed.The diverse effects of the use of hormones on both fish and their environments© Abo-Al-Ela, 2018Single-sex populations, preferably all-male populations, have long been known to be favourable for tilapia producers, as their culture results in higher and more uniform growth rates. Unlike mammals, many fish have the possibility to change their sex. With tilapia, the easiest way of achieving this is through the use of hormones at the juvenile stage. By feeding the fry with certain steroids or by dipping them in water doused with steroids, sex change can be rapidly achieved. Although an assortment of steroids is used, the most common one is methyltestosterone.Abo-Al-Ela (2018) recently provided a thorough overview of the many concerns associated with the use of steroids in aquaculture, including their effects on exposed farm staff, contamination of public waterways with residues, genotoxic effects and on suppressing the immune systems of treated fish.As Abo-Al-Ela explains, methyltestosterone is a severe endocrine disrupter and is known to induce genotoxic effects on human lymphocytes, which help regulate our immune systems. In Egypt, researchers have recently shown that tilapia treated with hormones have low levels lymphocytes plus white blood cells, which again play an important role in suppressing and combatting the disease.Similar research on Chinook salmon showed that fish treated with testosterone showed a significant decrease in antibody-producing cells. The magnitude of the steroid-induced immunosuppression was reduced in winter and increased again in spring, which might explain the comparable seasonality in disease outbreaks for tilapia as well.An even less-investigated topic is the genotoxicity of these hormones and other chemicals, including antibiotics, used in aquaculture. Genotoxicity is described as the property of chemical agents which damages the genetic information of a cell, causing mutations which may lead to cancer. These permanent changes can be passed on to future generations of fish.A recent study on the exposure of fish to antibiotics (including short-term exposure to low environmental concentrations often present in farming environments), revealed significant damage to the DNA of the fish as per Botelho et al. (2015). Although organisms can generally repair damaged DNA, some of the damage is most likely permanent and, worryingly, this damaged DNA can be passed on to future generations of tilapia.Another understudied issue is the lack of genetic diversity in captive tilapia strains plus the loss of genetic diversity in aquaculture and wild fish stocks in general, as discussed in our recent article on invasive and non-native species. By using the same breeding stock for generation after generation without following sophisticated breeding programmes, which happens often in tilapia culture, inbreeding occurs and the number of alleles (gene variations) present in the fish is reduced. Some of these alleles might have bolstered disease resistance and pathogen defence, while others might have made the fish more adaptable to climate change or other situations.Maintaining genetic diversity is key. A study characterising the genetic structure of introduced Nile tilapia strains in Tanzania showed a serious decline in genetic diversity for most of the locally-cultured tilapia strains. An important conclusion is that the effects of inbreeding and the consequent decline in genetic diversity is mostly affecting small-scale producers, who tend to have less knowledge of breeding programmes and less access to new breeding material.If there is a link between the reduction of genetic diversity and reduced effectiveness of the immune systems of tilapia, then developing countries and small-scale farmers will most likely be hit the hardest, validating current reports from the field.SolutionsEric Bink is a Dutch fish farmer who is a strong believer in alternative and truly sustainable paths for the tilapia sector. Studying aquatic ecology, he early on developed an interest in food fish production. “I was primarily interested in fish production without artificial intervention, using natural spawning cycles and carefully manipulating light and temperature. I wanted to develop a fish farming system in a wholly different direction, away from (at the time) salmon (hormone injection), catfish (hormones and taking out parts of the testes) and shrimp (eye-stalk ablation).”During a visit to Mombasa where his wife was finishing a veterinary degree, he visited a tilapia hatchery and saw an opportunity to start his own hatchery in the Netherlands. “Our operations don’t use hormones for sex-reversal. Instead, we apply insights into fish genetics in combination with genetic selection, also known as YY-technology.”Over 20 years have passed and Til-Aqua has become a leading player in the hatchery production of YY males, and natural male tilapia (XY males, the offspring of the YY males), the trademarked term used by the company.In brief, YY technology uses genetic selection to produce all-male juveniles without the use of hormones, or other chemicals, as thoroughly explained in our article on monosex selection in Macrobrachium.The company only uses genetic selection and careful temperature changes in the first days after hatching to change fish sex from male to female. The end product is a completely normal male with normal XY-chromosomes. This is in contrast with hormone sex-reversed tilapia, in which 50 per cent of the phenotypical males are still genetically female and have XX chromosomes.The development of YY lines at Til-Aqua© Til-AquaBink and his team have been perfecting this technology for the past 20 years and have developed two strong lines which they sell both as fingerlings (natural male tilapia) and broodstock (YY males). Their silver or wild type natural male tilapia reaches over 800 grams, making it ideal for either fillets or whole fish, while their red natural male tilapia is sold whole and performs very well in brackish and full-strength seawater systems.Red and silver tilapia are the two main strains developed by Til-Aqua© GardsfiskThe company also provides tailor-made training programmes, successfully assisting companies across the globe, specifically in Africa and South America.Bink explains that they have worked hard to maintain the genetic diversity of their strains by avoiding inbreeding. “Our way of breeding with two distinct O. niloticus lines (YY line and female line) shows a heterosis effect,” he explains.Also known as hybrid vigour, this means when two breeding lines are crossed together, the resulting hybrids are often more robust, vigorous and productive than their original parents.Unsurprisingly, the aforementioned study, which determined genetic diversity in selected tilapia strains scored Til-Aqua’s silver strain as the most genetically diverse.Several researchers have also used their breeding lines for experiments with the TiLV virus and other diseases, with the results being very optimistic. Though not all results are conclusive, even OIE notes on the TiLV disease card for tilapia that: “There is evidence that certain genetic strains of tilapia are resistant. Ferguson et al. (2014) noted that one strain of tilapia (genetically male tilapia) incurred a significantly lower level of mortality (10 – 20 per cent) compared with other strains.”The paper mentioned by OIE argues that the most likely cause for this would be the genetic make-up of the fish or the fact that they have not been subjected to feeding with methyltestosterone early in life. Either way, it shows there is a solution for farmers. In line with these findings, Bink and his team hope to develop a TiLV-resistant YY-line in the future.“Unfortunately our company cannot afford such a long and expensive project at the moment. But we are definitely open to collaboration,” he explains.Tilapia fry© Til-AquaFuture developmentsTo bring the tilapia sector back on track, the unique resistance of Til-Aqua’s tilapia against TiLV should be better understood. For this purpose, more research must be conducted to ascertain the relationship between the use of hormones for sex reversal and long-term effects on the immune responses of fish. The same goes for genetic selection and the genotoxic effect of veterinary drugs and other chemicals used in aquaculture.The stakes are high as the lives and livelihoods of millions of people in developing nations are at risk. Collaborative, inclusive and transparent research is crucial to stop the virus from spreading further.Simultaneously, more attention should be given to the genetic selection and the use of rigid breeding programmes to maintain and improve genetic diversity in fish farms. Using genomic tools to determine genetic diversity will be crucial for this.However, as the findings in this article show, a precautionary approach is warranted – the use of hormones should be seriously questioned, while the use of genetic selection for the natural production of all-male fish should seriously be considered as the most sustainable alternative.Source: The Fish Site   ...
Tilapia Pass Benefits of Streptococcus Vaccine to Their Offspring
Nila

Tilapia Pass Benefits of Streptococcus Vaccine to Their Offspring

A polyvalent vaccine can help to protect both tilapia broodstock and their offspring from the effects of Streptococcus agalactiae, according to a new study.Streptococcus agalactiae is one of the most prevalent bacterial diseases affecting the global tilapia sector and a number of different vaccines have been developed and have been shown to have varied levels of efficacy. This new study aimed to examine the use of S. agalactiae polyvalent vaccine on tilapia broodstock and whether maternal immunity and resistance to the pathogen could be passed on to their offspring.Offspring of vaccinated tilapia broodstock showed considerably higher survival rates when challenged with S. agalactiae© Spring GeneticsThe broodstock was injected with the vaccine at a dose of 108 CFU per fish at second gonadal maturity until spawning. Challenge tests were carried out on the offspring at 5, 10, 15 and 20 days after hatching using five different strains, both individually and in combination.The researchers, who were mainly based at Nanjing Agricultural University, observed immunological parameters in broodstock, eggs, and larvae and relative percent survival (RPS) of larvae after being challenged with pathogenic S. agalactiae. The results showed that the leukocytes, phagocytic activity, respiratory burst, lysozyme activity and antibody levels of vaccinated broodstock was at a higher level compared with unvaccinated broodstock.The high level of the lysozyme activity, antibody levels and recombination activating gene 1 (RAG1) were also observed in eggs and larvae from vaccinated broodstock. Larvae produced from vaccinated broodstock, when challenged with pathogenic S. agalactiae, had RPS values over 50 percent until 20 days after hatching.  “In conclusion,” wrote the researchers in their abstract, “polyvalent vaccine of S. agalactiae administrated in the broodstock could enhance immunity in the broodstock and protect their offspring from pathogenic S. agalactiae.”Source: The Fish Site ...
Fish Feed Yeast?
Nila

Fish Feed Yeast?

Research has shown that raising tilapia with yeast and in biofloc environments has a significant growth effect.Tilapia is a species of salted and widely raised fish in many countries around the world such as China, Indonesia, Thailand, ... (Abu et al., 2005). As the farming area and production increase, the potential for environmental pollution is increasing, so the study of biological agent influences is a positive trend contributing to environmental stability and limiting disease in ponds. feed. Biofloc technology is a new biotechnology solution that contributes to the development of aquaculture towards sustainability, biosecurity and environment friendliness thanks to the following outstanding capabilities: (1) Elimination Free ammonia in pond water by conversion to protein in heterotrophic bacteria biomass in biofloc, (2) Aquaculture animals use biofloc as feed, so the ratio of protein conversion in feed increases to 45-50%, (3) Improve biosecurity level and reduce disease risk. According to Azim and Little (2008), raising tilapia in biofloc results in faster growth rate and better water quality than non-biofloc. Similarly, Guozhi et al (2014) suggested that when raising tilapia in the biofloc system, the harvested fish volume was 22% higher and the feed conversion ratio was 18% lower than that of the fish raised in the circulatory system. whether or not biofloc. Previous research has evaluated the ability to use yeast in the biofloc system to improve the nutritional quality of biofloc, improve digestibility for livestock, and stimulate growth. Therefore, the purpose of this study is to compare the effect of yeast as a protein source instead of fish meal in tilapia diet ( Oreochromis niloticus ) cultured in either clear water or biofloc conditions.The experiment was arranged completely randomly with 4 treatments, immature tilapia (initial weight of 29 ± 3.2 g), randomly distributed into 24 500 L conical tanks to conduct experiments. experience. The treatments used feed had the same 5% protein and 19 KJ / g energy. Feed treatments in turn with yeast dosage as follows 0%, 30%, 60% and 100% of fish meal protein were replaced by yeast. Fish were raised for 3 months, fed by hand twice a day. 12 tanks in a recirculating aquaculture system (RAS) with clear water, with mechanical and biological filters and an average of 15% daily water replacement. The other 12 tanks were connected to four open 10-m3 open biological tanks initially bred with Bacillus subtilis and nutrients to achieve a C: N ratio of 10, supporting bacterial growth. At the end of the experiment, the amount of feed, the amount of protein, weight gain, daily weight gain, specific growth rate, feed conversion rate, protein efficiency rate, survival rate and body index of the fish Tilapia has been identified. ResultAfter 3 months of the experiment, fish raised in clean water had lower growth weight than those in biofloc supplemented with yeast. Although the amount of feed and protein was nearly identical in both media, significantly higher growth was observed in fish cultured in biofloc media, accompanied by feed conversion rates and efficiency. The protein improved significantly and reduced mortality. In the yeast fermentation treatments, the 60% yeast fermentation treatment showed that the final weight, the relative and absolute growth rates were the highest and the FCR values ​​were the lowest. From the study, it can be concluded that people can use yeast with a 60% dosage to replace fish meal without affecting the growth and survival of tilapia. At the same time, fish cultured in biofloc the environment will bring high efficiency, stimulate growth, thereby raising the survival rate to bring economic efficiency for farmers.Source: tepbac.com ...
Nila Toba Sampai ke Amerika
Nila

Nila Toba Sampai ke Amerika

Ikan Nila Fillet yang Dihasilkan Berkualitas Tinggi Menembus Pasaran EksporHidangan steam fillet ikan nila yang dibungkus alumunium foil menjadi makanan pelengkap obrolan sore itu. Saat dibuka bungkusnya, daging putih yang masih agak panas itu mengepulkan asap tipis. Tanpa dibumbui apa-apa daging ikan itu terasa segar dan kenyal, dengan rasa yang khas tanpa bau lumpur sedikit pun setelah dicicipi. Itulah salah satu pengalaman berkesan dari tim TROBOS Aqua yang berkesempatan mencicipi olahan fillet nila berkualitas premium yang diproduksi langsung dari Danau Toba. Menurut Head of Unit Tilapia Processing Toba Tilapia Imam Santoso, fillet nila premium dihasilkan melalui sistem produksi yang bagus dari hulu hingga hilir, yang terintegrasi mulai dari pembenihan nila berkualitas, pendederan, pembesaran, hingga pengolahannya. Tak ayal jika produk fillet nila Danau Toba bisa menembus beberapa pasar luar negeri. Mulai dari pasar Asia yang meliputi Singapura hingga Taiwan. “Juga sampai Amerika, yakni Amerika Serikat dan Kanada,” tambah Imam. Jaga Kualitas Premium Fillet nila premium ini, terang Imam, dihasilkan oleh PT Suri Tani Pemuka (STP), anak perusahaan JAPFA, di Kabupaten Simalungun, Sumatera Utara. Pabrik seluas kurang lebih 7,4 hektar (ha) ini sudah beroperasi menghasilkan fillet nila premium untuk ekspor sejak beberapa tahun yang lalu. Dia pun menerangkan, alasan STP mengambil bisnis nila hingga olahannya antara lain untuk menghindari persaingan dengan para pembudidaya lokal di pasar ikan segar. Dan untuk menghasilkan olahan nila premium tak terlepas dari sistem produksi yang sudah tersertifikasi. Dalam company profile STP (Toba Tilapia), disebutkan perusahaan ini memiliki spesialisasi dalam menghasilkan tilapia (nila) dengan kualitas premium menggunakan induk yang berkualitas tinggi dan pakan yang diproduksi khusus oleh pabrik pakannya sendiri. Tilapianya dibudidayakan secara alami dalam keramba jaring apung (KJA) di Danau Toba. Dengan sistem budidaya yang baik tersebut, Toba Tilapia mendapatkan beberapa sertifikat seperti BAP (Best Aquaculture Practices), ASC (Aquaculture Stewardship Council), juga dari KKP (Kementerian Kelautan dan Perikanan). Proses budidaya yang tersertifikasi ini penting dalam menghasilkan produk fillet yang berkualitas. Imam Santoso mengatakan, kualitas tekstur daging dan rasa produk fillet yang baik dihasilkan dari ikan yang dibudidayakan dengan baik. Imam menceritakan secara singkat bagaimana nila dari Danau Toba diolah. Untuk menjaga kualitas, kata Imam, nila yang diproses harus masih hidup. Padahal jarak pengangkutan dari Danau Toba ke pabrik tersebut mencapai 32 kilometer (km). “Fresh masih hidup, kalau mati gak diproses,” terangnya sambil mengamati proses olahan dari CCTV. Ikan mati, meskipun belum lama, tidak dapat diproses karena darah di dalam tubuhnya tidak sempat dikeluarkan. Padahal, pengeluaran darah dari dalam ikan ini menjadi salah satu proses yang harus dilakukan di pabrik Toba Tilapia agar kualitasnya bagus. “Kalau mati kan darah belum keluar. Kalau di dalam proses (SOP) kan ada proses bleeding, mengeluarkan darah,” imbuh Imam. Proses pembuatan fillet berjalan setiap hari kerja. Bahan baku ikan hidupnya sudah sampai di pabrik dari pukul setengah 6 pagi. Secara umum, untuk sampai menjadi fillet berkualitas ekspor ada beberapa proses yang harus dilakukan seperti bleeding (pengeluaran darah), pemiletannya itu sendiri, penyucian, skinning (pemisahan kulit), trimming (perapihan setelah dikuliti), pemvakuman, pembekuan, hingga pengemasan. Berdayakan Masyarakat Memulai budidaya sejak 2012, Toba Tilapia mendapat izin dari Pemerintah Daerah Simalungun untuk memproduksi nila hingga 30 ribu ton per tahun di 3 lokasi di Danau Toba. “Tapi saat ini kami hanya beroperasi di satu lokasi saja,” kata Imam. Produksinya pun masih sangat jauh dari izin yang diberikan. Pada 2018 saja, produksi nila Toba Tilapia masih di angka 4 ribu ton per tahun. Telah berproduksi sejak 2012, Toba Tilapia baru menggunakan pabrik sendiri itu sejak 2016. Pembuatan pabrik nila di Sumatera Utara ini sebagai respon dari ajakan pemerintah daerah saat itu untuk memajukan Simalungun. “Ya kami berusaha seluruhnya di kabupaten Simalungun, mulai dari hatchery, grow out dan processing plan, juga tenaga kerja 85 % warga lokal, kami juga pakai merk dagang Toba Tilapia, sehingga kami membawa nama Toba mendunia,” ungkap Imam. Sesuai dengan jargon utama perusahaan induknya “Growing towards mutual prosperity” dimana Toba Tilapia turut memberdayakan masyarakat setempat. Tidak hanya memberdayakan secara langsung dengan menjadikannya karyawan, tetapi juga melalui peluang dan aktivitas lainnya. Pemberdayaan ini sudah dimulai dari hulu produksi di bagian budidaya hingga di bagian pemanfaatan limbah produksi pengolahan. Dari sisi hulu, Toba Tilapia telah memberdayakan pembudidaya lokal untuk bekerjasama dalam menghasilkan benih ikan nila yang siap ditebar di KJA Danau Toba. Kerja sama ini terjalin dalam program contract farming. Di mana pembudidaya mendapatkan larva berkualitas dari hatchery Toba Tilapia untuk dipelihara hingga bobotnya 20 gram. Setelah itu benih dibeli kembali oleh Toba Tilapia untuk ditebar di KJA.Kerja sama ini membawa dampak positif bagi para pembudidaya mitra, mereka merasa diuntungkan dengan kerjasama tersebut. Sebabnya mereka mendapatkan pasokan bibit nila yang berkualitas. Hal itu membuat kegiatan budidaya mereka menjadi lebih mudah. “Saya semangat juga bergabung di sini. Karena ada pertumbuhan lebih cepat. Hasil kerja kita putarannya jadi lebih cepat lagi,” ujar Gimson, salah satu pembudidaya mitra Toba Tilapia.Sementara di bagian hilirnya, Toba Tilapia juga melakukan edukasi kepada masyarakat setempat untuk memanfaatkan hasil samping dari pengolahan. Hasil samping ini cukup banyak karena produk akhir hanya membutuhkan 27-33 % bagian tubuh ikan nila. “Kita kerja sama dengan karang taruna dan kelompok tani, kita jual kepala dan tetelan (nila),” ungkap Imam Santoso. Untuk dapat memanfaatkan hasil samping tersebut, masyarakat terutama ibu-ibu PKK diberikan pelatihan cara pengolahannya. Beragam produk bisa dihasilkan dari hasil samping itu, mulai dari kerupuk kulit, tepung ikan, minyak ikan, hingga menjadi bahan baku. “Tetelannya itu mereka setiap hari ada yang beli fresh. Ada juga yang kita bekukan (hasil sampingnya),” tambah Imam.  Menurutnya lagi, pemberdayaan masyarakat untuk pengolahan hasil samping ini telah sejalan dengan pemerintah daerah Kabupaten Simalungun yang perhatian dengan produk sampingan dari olahan ikan. Tak hanya untuk keperluan masyarakat sekitar, hasil samping dari olahan nila Toba Tilapia juga bisa sampai ke pulau Jawa. “Itu biasanya kalau di Jawa dibuat kerupuk kulit” kata Imam.Artikel Asli : Trobos Aqua ...
Farmed Tilapia See Growth, Meat Quality Boost From Nerolidol Supplement
Nila

Farmed Tilapia See Growth, Meat Quality Boost From Nerolidol Supplement

Adding supplemental nerolidol to diets of farmed tilapia improves fish growth and performance along with increasing meat quality, researchers say. A team of researchers from the Federal University of Santa Maria, the State University of Santa Catarina and the Franciscan University, Santa Maria in Brazil explored the influence of both dietary free and nanoencapsulated nerolidol on the performance and fatty acid profile farmed Nile tilapia. “The aim of this study was to evaluate whether dietary supplementation with free or nanoencapsulated nerolidol improves growth performance, meat antioxidant status and fillet fatty acid profiles in Nile tilapia,” ​the researchers said.The researchers found that adding 1 mL nanoencapsulated nerolidol/kg of feed increased the final body weight and growth rate for fish compared to those on the control diet. Fish receiving the supplemented feed had lower lipid peroxidation levels and reduced reactive oxygen species in meat.The meat antioxidant capacity for peroxyl radical was smaller in fish on diets supplemented with nanoencapsulated nerolidol compared to fish on the control diet, they said.Catalase activity in tissue was increased while hydrogen peroxide levels fell for fish on diets with 1mL free nerolidol/kg of feed and feed supplemented with nanoencapsulated nerolidol compared to those eating the control diet.All fish on supplemented diets displayed lower levels of saturated fatty acids (SFA) compared to results for fish receiving the control diet, they said. However, the total content of monounsaturated fatty acids (MUFA) increased for supplemented fish.“It appears that nanoencapsulation of nerolidol exerted potent benefits for fish health, manifesting as improvement in growth performance and reduction in meat ROS [reactive oxygen species] and LPO [lipid peroxidation] levels in fish fed with nerolidol nanospheres,” ​the researchers said. “Both forms improved meat quality based on reduction of SFAs and increases in MUFAs, suggesting that dietary supplementation with nanoencapsulated nerolidol is a compelling approach to improving fish health and meat quality.”​Alternatives to AGPs​Aquaculture is a rapidly growing food production sector globally, witnessing an average annual growth rate of 5.8% from 2000-2016 and providing about 80m tons of fish by 2016, the researchers said.Aquaculture production provides a source of protein and essential micronutrients for humans, they said. Compared to terrestrial animals, fish is a source of essential fatty acids, including polyunsaturated fatty acids.However, expanding aquaculture production has been accompanied by the use of semi-intensive or intensive farming systems, which are stressful conditions for fish that may increase the chance of disease outbreaks and high rates of fish mortality, they said.“Enhancing fish health is a major concern of fish farmers; until some time ago, this end was achieved primarily using antibiotics; however, this practice is currently discouraged because of the emergence of antibiotic-resistant bacteria, environmental side-effects, alterations in microbial communities, and accumulation in edible tissues,” ​they said. “Today, the search for unconventional and more environmentally-friendly growth promoters as alternatives to antibiotics are compelling methods to promote animal health and well-being in order to sustain safer and more productive aquaculture.”​Why add nerolidol to fish feed?​Manufactured drugs are starting to be replaced with natural products and nutritional additives that enhance the antioxidant system, the researchers said. These include essential oils and their isolated compounds like sesquiterpenes.“Sesquiterpenes are C-15 terpenoids that occur as hydrocarbons or in oxygenated forms such as alcohols, ketones, aldehydes, acids or lactones in nature; they are important constituents of essential oils, with many applications in fish production,” ​they said. “Nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol) is an aliphatic sesquiterpene alcohol with several pharmacological properties in mammals, including neuroprotective, trypanocidal, antimicrobial and antioxidant properties.”​No research has been done exploring the use of isolated nerolidol ub fish, but the compound is found in Lippia alba​ essential oil, which is used as a fish anesthetic, they said.Previous research suggests that using nanotechnology or loading nerolidol into nanospheres could increase the compound’s antioxidant capacity, they said.“Nanotechnology is a science devoted to the design, synthesis, characterization and application of materials that possess a functional organization on the nanometric scale (10−9 m); where the reduction of particle size at nanometric scale increases the particle reactivity and alters the pharmacological properties of active principles,”​ the researchers said. Nanotechnology is starting to be used to improve the “production, processing, storage, transportation, traceability, safety and security”​ for aquafeed, they added.“Shah and Mraz (2019) reported that nanotechnology is a compelling alternative to avoid the excessive usage of antibiotics, for identification of new natural bioactive compounds that could be used as growth promotors,”​ they said. The technology can be used to improve the efficacy of bioactive compounds and provide for a targeted and sustained release.The researchers’ hypothesis was that nerolidol’s antioxidant properties would improve fish health, boost Nile tilapia growth performance, improve meat antioxidant status and the fatty acid profile in fish fillets.Feeding trial ​During the feeding trial, 200 Nile tilapia fingerlings received one of five trial diets for 60 days. The diets used a commercially available nerolidol and contained 38% protein.The trial feeds included a non-supplemented control diet (Group A) comprised of meat and bone meal, soybean meal, corn and rice bran, the control diet supplemented with 0.5mL/kg of feed free (Group B) or nanoencapsulated nerolidol (Group D), or the control diet with 1 mL/kg of feed free (Group C) or nanoencapsulated nerolidol (Group E).Fish were weighed and measured at the start and end of the feeding trial, they said. Weight gain, growth rate (SGR), condition factor (CF), percentage of fish survival and feed intake (FI) were calculated.A selection of fish on every diet was collected at the end of the trial to sample muscle fillets, the researchers said. Tissue was assessed for meat reactive oxygen species (ROS), meat hydrogen peroxide concentration, meat lipid peroxidation levels (LPO), meat carbonyl protein content and meat antioxidant capacity against peroxyl radicals (ACAP).Fish fillets were also checked for meat superoxide dismutase (SOD) activity, meat catalase activity (CAT), muscle protein content and fatty acid profile, they added.Results​Overall, fish receiving the diet with 1 mL/kg feed nanoencapsulated nerolidol had increased weight gain and a higher final mean weight compared to fish on the control diet, the researchers said. Tilapia on that diet had lower ROS and LPO levels compared to control group fish.However, no major differences were noted based on diet for survival, feed intake or condition factor, they said.“These data suggest that nanoencapsulation of nerolidol promotes fish health by promoting growth and reducing free radical production and lipid damage,”​ the researchers said. “Free and (particularly) nanoencapsulated nerolidol enhanced muscle/meat enzymatic and non-enzymatic antioxidant systems.”​Meat hydrogen peroxide concentration was reduced for fish on the 1mL free nerolidol/kg feed, 0.5mL nanoencapsulated and 1mL nanoencapsulated diets, they said. Fish on all diets had similar protein carbonylation levels.Fish receiving diets with encapsulated nerolidol had higher meat ACAP levels and CAT activity increased for those fish and tilapia on the diet with 1mL free nerolidol, they said.But there were no major differences found for SOD activity regardless of diet. Supplementing diets with either type of nerolidol lowered total saturated fatty acid levels and increased the amount of monounsaturated fatty acids, they said. However, all fish had similar results for the sum of polyunsaturated fatty acids (PUFA).Source : Feed Navigator ...
Nila Sebagai Komoditas Urban Farming
Nila

Nila Sebagai Komoditas Urban Farming

Nila yang dikenal sebagai komoditas tahan banting dinilai berpeluang besar untuk dimanfaatkan lebih luas untuk budidaya urban farmingAkuaponik urban farming menjadi salah satu inovasi teknologi yang sedang hangat-hangatnya diperbincangkan dunia kala ini. Khususnya di kalangan kaum muda perkotaan. Karena sistem urban farming ini memanfaatkan lahan sempit, hemat air, ramah lingkungan, serta bisa menghasilkan komoditas yang menguntungkan.Konsep awalnya berasal dari integrasi sistem tanaman hidroponik dengan kolam berisi komoditas ikan. Inovasi ini bahkan sudah dikenal di kalangan peneliti perikanan lebih dari satu dekade lalu. Bahkan konsep akuaponik ini menjadi salah satu unggulan yang dipamerkan dalam salah satu expo pertanian dan perikanan 2011 lalu di Tenggarong-Kalimantan Timur. Di Eropa, seperti di negara Belanda, Jerman, Swiss, hingga Perancis, sudah banyak kalangan muda yang mengembangkan inovasi teknologi untuk urban farming. Dan di Belanda, seperti di Den Haag sudah pernah dikembangkan urban farming dengan akuaponik memanfaatkan ikan nila. Nila, atau populer disebut tilapia menjadi komoditas pilihan akuaponik karena dinilai lebih tahan banting terhadap kondisi perairan. Karena nila merupakan ikan yang lebih resisten, tahan terhadap perubahan yang terjadi dalam air, seperti suhu. “Apalagi nila menjadi salah satu komoditas pilihan favorit untuk konsumsi masyarakat,” terang Muhammad Iqbal, pelaku usaha lele dan nila di daerah Jatiasih, Bekasi-Jawa Barat.Lebih Tahan BantingSementara di Indonesia sendiri, pengembangan akuaponik juga sedang dilakukan balai-balai penelitian terkait. Seperti dikembangkan melalui konsep Yumina-Bumina Balai Riset Perikanan Budidaya Air Tawar dan Penyuluhan Perikanan (BRPBATPP) Badan Riset Sumber Daya Manusia Kelautan dan Perikanan Kementerian Kelautan dan Perikanan (BRSDM KKP). Nurhidayat, Pelaksana tugas (Plt) Kepala BRPBATPP mengatakan, saat ini sistem Yumina-Bumina berdasarkan lima sistem yakni sistem rasponik, sistem aliran bawah, sistem aliran atas, sistem pasang surut, dan sistem rakit. Komoditas yang dikembangkan selain nila adalah lele, patin, dan mas. Sistem akuaponik ala rasponik dengan nila bahkan sudah Iqbal terapkan bersama komoditas lainnya, yaitu lele. Bahkan, hal yang menggembirakan bagi Iqbal, penerapan budidaya seperti ini memberikan laju sintasan yang sangat baik dibanding budidaya sistem konvensional. “Baik nila atau lelenya, tingkat kematiannya sangat sangat rendah. Bahkan bisa saya katakan dibawah 1 %,” ujar Iqbal.Artikel Asli : Trobos Aqua ...
Antioxidants Protect Tilapia From The Toxin Mycotoxin
Nila

Antioxidants Protect Tilapia From The Toxin Mycotoxin

A new study published in the journal Sciencedirect has explored the use of quercetin, rutin and polyphenol antioxidants in tea to prevent food contaminated with T-2 mycotoxin (Mycotoxin) in tilapia.In recent years, in the field of aquatic feed production, the trend of replacing animal protein sources with vegetable proteins has led to a higher risk of toxin contamination. In particular, in hot and humid climates, such as Southeast Asia, mycotoxin contamination is more common. Mycotoxins are toxic chemical compounds generated by molds including Aflatoxin, Ochratoxin A, Trichothecenes (DON; T-2; toxin), Zearalenone, Fumonisin and Moniliformin. Mold can be spread from grains and oilseeds, during planting, harvesting, processing and storage. During the time of manufacture and use of food, if the temperature and humidity are favorable, mold will grow and produce toxins. Each population of mushrooms growing under different conditions will produce many types of toxins.Unlike terrestrial animals, aquatic species do not have obvious clinical manifestations of mycotoxin contamination, so the topic of mycotoxin influences is often not covered in aquaculture discussions. aquaculture. Mycotoxin is one of the factors that will affect growth performance, feed efficiency and disease resistance, causing economic losses to farmers.Poisoning mycotoxins from plant-based foods will adversely affect the growth and health of tilapia (Oreochromis niloticus). Therefore, the study of Deng et al. Was conducted to find natural biological agents that can protect against these toxins.The diet containing quercetin, rutin and polyphenol antioxidants in tea has been studied for the effects of antioxidants on growth, antioxidant reactions, pathological changes and T-2 residues. in tilapia. Research on feedingIn feeding trials, five groups of tilapia (Oreochromis niloticus) were exposed to increasing T-2 dose and supplementing with antioxidants (control, T-2, T-2 + quercetin, T-2 +). rutin, T-2 + tea polyphenols) for 20 days to evaluate the antioxidant's effect on growth, antioxidant enzyme activity, histopathology and residues in liver and muscle .ResultThe results indicated that exposure to  increased T-2 dose significantly decreased survival, decreased growth, decreased liver indices, decreased liver and muscle cell damage, and increased T- 2 in the liver and muscle.Dietary supplementation with antioxidants effectively reduces liver and muscle damage. In summary, tea quercetin, rutin and polyphenols significantly reduced liver and muscle damage in tilapia.Supplementing with rutin tilapia diets showed improved growth, increased antioxidant and significantly reduced liver and muscle damage. Therefore, the addition of antioxidants to the diet of fish is necessary to stimulate immunity against morbidity and mortality associated with mycotoxins in fish.T-2 toxin causes adverse effects on tilapia and disturbs the antioxidant system in plasma and liver causing hepatitis and liver toxicity.  The addition of antioxidants in the diet has proven effective in protecting farmed fish against mycotoxins and by improving liver and muscle damage. In addition, the addition of tea polyphenols to fish food helps increase antioxidant and reduce the negative effects of T-2 toxicity. Therefore, this supplement can be used as a strategy to reduce T-2-related toxicity in fish. Source : tepbac.com ...
Effect of Pre-Slaughter Stress on Quality of Tilapia Fillets
Nila

Effect of Pre-Slaughter Stress on Quality of Tilapia Fillets

Stress is a condition of high aerobic energy demand to supply the body’s maintenance mechanisms during activation for adaptation and resistance of the body to stressful conditions. In aquaculture, fish are subjected both to acute stressors, such as handling, and chronic stressors, including environmental changes (such as temperature, water quality and salinity), interactions with other fish and prolonged physical stress (such as transport and increased densities).When fish are subjected to stress, vigorous swimming increases anaerobic glycolysis, leading to lactic acid production and a consequent decline in muscle pH, which is accompanied by a faster onset of rigor mortis. The combination of stress and intense physical activity at pre-slaughter can increase the degree of protein denaturation and, thus, increase the access of proteolytic enzymes to protein substrates, leading to faster muscle softening, which is detrimental for fish muscle.In addition to denaturation and proteolysis, muscle proteins also undergo oxidative damage after slaughter and subsequent meat aging. Protein oxidation is responsible for many biological changes, such as protein fragmentation or aggregation and decreased protein solubility, which affects meat quality. Oxidation may also play a role in controlling the proteolytic activity of enzymes and may be linked to meat tenderness.However, endogenous antioxidant factors, such as enzymes, control oxidation in muscle tissues. Several enzymes can neutralize meat oxidation. A recent study has shown that the activities of these enzymes are significantly lower in pale, soft and exudative (PSE) chicken meat, which makes this type of meat more susceptible to proteolysis and protein oxidation.Thus, oxidative stress may be an important cell mechanism in the process of meat softening. Oxidative metabolism has also been cited as a potential controlling factor of heat shock proteins (HSPs; a family of proteins produced by cells in response to exposure to stressful environments), especially because it protects structural proteins against oxidative stress and proteolysis, which are essential for tenderness. HSPs can act as molecular chaperones, facilitating protein folding, preventing protein aggregation, or conducting improperly folded proteins into specific degradation pathways, and HSPs also play a role in the refolding of damaged proteins for protection and repair of cells and tissues. A variety of stresses, including oxidative stress, have been linked to increased HSP expression in skeletal muscle.The relationship between redox imbalance and meat quality in fish subjected to pre-slaughter stress is still unknown. This article – adapted and summarized from the original publication – evaluated the effect of depuration-related oxidative stress on the instrumental and sensory quality of Nile tilapia fillets.Study setupExperimental animals were obtained from farming cages in the Corvo River, Diamante do Norte Municipality, Paraná (PR), Brazil. Nile Tilapia of the Tilamax variety (±800 grams) were transported to the UEM/CODAPAR Aquaculture Station in the municipality of Maringá-PR, and stocked into 10-cubic-meter concrete tanks at a density of 5 kg per cubic meter. The fish were kept in these tanks for 40 days to recover from the stress related to transportation and for adaptation of the animals to the experimental structure.After this period, an experiment was conducted in a 2×2 factorial arrangement using density (60 and 300 kg per cubic meter) and depuration time (1 and 24 hours) as experimental factors with a total of 4 treatments with 20 replicates per treatment (where the fish was the experimental unit).Initially, the animals were removed from the concrete tanks with the aid of a hand net, and placed in 500-liter polyethylene tanks equipped with water recirculation and an artificial aeration system, and one box was used per treatment. The fish were subjected to the following treatments: 60 kg per cubic meter for 1 hour; 60 kg per cubic meter for 24 hours; 300 kg per cubic meter for 1 hour; and 300 kg per cubic meter for 24 hours. We sampled 20 fish per treatment. Of these, five fish were used for blood, muscle and liver collection for cortisol analysis and gene expression, after which, these animals were euthanized and filleted for meat quality analyzes. Instrumental quality analyzes of fillets were performed on 10 fish per treatment (including animals submitted to blood and tissue samples). Sensory analysis was performed with the remaining 10 fish per treatment. Whole skinless fillets were washed in chlorinated water at 5 ppm, vacuum packed and transported on ice to the laboratory for meat quality analyses.For detailed information on the experimental design; determination of cortisol levels; evaluation of gene expression, pH, color, tenderness and water-holding capacity analyses; sensory analysis; and statistical analyses, refer to the original publication.Results and discussionIn fish, acute stress exposure causes rapid elevation of cortisol levels, which are quickly restored to resting levels during recovery from stress. Our results show that the increase in the density of tilapia for a short period of time increased serum cortisol levels regardless of the density being high or low. However, the maintenance of fish at low density allowed recovery from stress over time, which did not occur at high density. In general, plasma cortisol levels increase rapidly after exposure to acute stress, and normal conditions are restored within a few hours.The maintenance of tilapia at high density for a long period of time apparently led to a chronic stress condition because the cortisol level in fish at a density of 300 kg per cubic meter for 24 hours was higher than the others. High fish densities can affect fish performance and well-being through crowding stress and/or changes in water quality. Chronic stress usually involves changing the energy metabolism to deal with the stressor agent, which significantly affects the immune system of the animal.Fig. 1: Serum cortisol levels of Nile tilapia at different densities (60 and 300 kg per cubic meter) and depuration times (1 and 24 hours). Effects of the interaction density x depuration time (A) and the individual factors (B and C). Lower case letters indicate a significant difference.During stress, elevated levels of plasma cortisol mobilize energy stores primarily through genomic actions. In the present study, the expression of the catalase (CAT) and glutathione peroxidase (GPx) enzymes was similar in both liver and muscle. The fish subjected to the lower stocking density and the shortest depuration time had the highest CAT and GPx expression levels. The activity of these enzymes is an important indicator of the activation of the cellular antioxidant defense system and protection against oxidative stress.Oxidative stress is the imbalance between the production and degradation of oxygen reactive species (ROS), such as superoxide anion, hydrogen peroxide and lipid peroxides. The enzymatic inactivation of ROS in muscle tissue is performed mainly by the superoxide dismutase (SOD), CAT and GPx enzymes. The decrease in enzyme activity may be related to alteration or reduction of gene expression and transcription. In our study, the most stressed animals (at a density of 300 kg per cubic meter) presented lower expression of the CAT and GPx enzymes. Oxidative stress may have led to a decrease in the activity of antioxidant enzymesThe higher stress caused by high density resulted in lower expression of the CAT and GPx enzymes, which may have generated more tender fillets. The oxidative stress was related to the process of meat softening due to greater proteolysis and protein oxidation. Oxidation leads to protein fragmentation or aggregation and decreased protein solubility, which affects meat quality. Protein oxidation may also play a role in controlling the proteolytic activity of enzymes and may be linked to meat tenderness. PSE chicken meat has lower CAT, GPx and SOD activity than normal meats. Other authors have reported that enzymes involved in oxidative stress, such as SOD or peroxiredoxin 6 (PRDX6), are negatively related to tenderness.Changes in meat tenderness may also be related to the activation of heat shock proteins (HSPs) in the muscle. In our study, animals subjected to high density stress (300 kg per cubic meter) showed higher HSP70 expression and more tender fillets. In response to cell stress, such as hyperthermia, oxidative damage, physical injury or chemical stressors, the expression of HSPs increases dramatically. HSPs delay the rate of muscle aging and decrease the degradation of myofibrillar proteins.Studies on beef have identified HSPs as biomarkers of meat tenderness, and HSP activity differs between tender and tough meat. The lower activity of HSP70 is associated with higher beef tenderness. In contrast, in our study the fish with higher HSP70 expression (high density = greater stress) produced fillets with a less firm texture. Thus, the higher HSP70 expression was apparently not enough to slow protein oxidation, demonstrating that this is not as efficient in fish as it is in beef.Another mechanism associated with decreased firmness in fillets may be pH decline. Fish subjected to high density (300 kg per cubic meter) for 1 hour produced fillets with lower pH and shear force. Vigorous swimming under stress conditions leads to intense white muscle use, increasing anaerobic glycolysis and lactic acid production, which leads to a reduction in muscle pH. Slaughtering fish stocked at high density (300 kg per cubic meter) after 1 hour may have resulted in a faster use of glycogen with an increased anaerobic respiration rate, resulting in higher production of lactic acid and lower pH of the meat. The pH decline post-mortem may negatively affect the texture of fillets as it alters protein solubility and increases the proteolysis and denaturation rate.Fig. 2: pH values of Nile tilapia fillets at different densities (60 and 300 kg per cubic meter) and depuration times (1 and 24 hours). Lower case letters indicate significant difference. Vertical bars indicate standard error of the mean.High density (300 kg per cubic meter) for 24 hours resulted in higher pH, which may be related to the depletion of glycogen reserves. The intense activity for a long period of time before slaughter causes the fish suffer great wear and can deplete glycogen completely. The high consumption of glycogen by stress and the simultaneous removal of lactic acid by the circulatory system in the living animal would leave it without reserve of glycogen, so that, after death, rigor mortis would proceed without production of lactic acid, with the pH remaining high, resulting in the absence of the pre-rigor phase and a full rigor without decreasing pH, called alkaline rigor mortis.High-density stress also led to the production of fillets with higher lightness and lower redness. More stressed fish fillets can develop with higher brightness, and changes in color. This may be related to a change in pH caused by stress, which induces a faster denaturation of the protein and therefore a change in the pattern of light reflection in the muscle, an effect established quite early in the rigor process. These hypotheses were corroborated in the present study, which evidenced the relationship between stress arising from higher density and the development of changes in fillet color. Other studies with fish have also reported an increase in lightness after exposure to acute pre-slaughter stress.Changes in the quality of fish fillets subjected to high density stress resulted in losses in the sensory acceptance of fillets because tilapia at the density of 300 kg per cubic meter presented fillets with less general acceptability. In the correlation analysis, the acceptability was more related to the juiciness of the fillets. A previous study has shown that less stressed tilapia produces meat with higher water holding capacity (WHC), lower water loss by pressure and higher juiciness. In the present study, the lower acceptance may be related to the changes observed in the instrumental quality (greater tenderness, greater lightness and lower redness). In fish, the best quality is firm and cohesive flesh with good water holding capacity. Therefore, excessive fillet tenderness is highly undesirable as it can have a major impact on consumer acceptance.Table 1. Sensory profile and correlation matrix between the attributes of Nile tilapia fillets at different densities (60 and 300 kg per cubic meter) and depuration times (1 and 24 hours). Hedonic scale between 1 (disliked extremely) and 9 (liked extremely). Data are expressed as the mean ± standard error of the mean.It should be noted that fish fillets subjected to lower density (60 kg per cubic meter) were more associated with the sensory attributes evaluated, while the fillets from more stressed fish (300 kg per cubic meter) were inversely related to the attributes analyzed as demonstrated by the PCA. Likewise, a previous study with cod has also shown that less stressed fish obtain higher scores on the attributes of general acceptance, texture and juiciness.Therefore, high density generated oxidative stress, decreased the expression of antioxidant enzymes (CAT and GPx) and increased the expression of HSP70 in tilapia. These changes negatively affected the quality of the fillets, which presented less firm texture, greater lightness, less redness and less sensory acceptability. To our knowledge, these are the first data on the link between redox imbalance and deleterious changes in fish meat quality. These results indicated stress should be controlled in the pre-slaughter period of fish, aiming to improve the quality of the meat and the lives of the animals. Although the maintenance of fish at high density is feasible, it can cause sensory damage to the quality of fish fillets.Perspectives High fish stocking density (300 kg per cubic meter) during tilapia pre-slaughter causes lower expression of the CAT and GPx enzymes but higher expression of HSP70, resulting in the production of fillets with higher tenderness, higher lightness, lower redness and decreased sensory acceptability. Based on our results, low density and longer depuration times are recommended for decreased stress and improved quality of tilapia fillets.Source : Global Aquaculture Alliance ...
Sodium Bicarbonate - Safe Anesthetic for Red Tilapia
Nila

Sodium Bicarbonate - Safe Anesthetic for Red Tilapia

The need for transporting and handling live fish in aquaculture operations has led to the development of methods of anesthetizing fish without reducing their health or commercial value.Untreated fish are under great pressure during fishing, transporting, causing stress and pain, affecting physiological and biochemical reactions in fish, causing hormonal and metabolic disorders. in fish. Besides, although many types of chemical anesthetics are available, it is necessary to carefully consider the economic, safety and regulations when using chemical anesthetics on food fish. One of the safer chemical anesthetics that can be used in fish anesthesia is sodium bicarbonate (sodium bicarbonate). It is also known as baking soda and when dissolved in water, it releases carbon dioxide, which has an anesthetic effect on the fish (Bowser 2001). This gas has been shown to be safe for humans; therefore, there are no restrictions on its use (Summerfelt and Smith 1990). When used as an anesthetic, carbon dioxide is bubbled in water directly through an airflow connected to the source or indirectly by adding sodium bicarbonate as a source of carbon dioxide (Altun et al. 2009).In an earlier study involving tilapia ( Oreochromis niloticus)) demonstrated the effectiveness of the use of this chemical anesthetic, and its effectiveness was influenced by the size and size of the fish (Opiyo et al. 2013). Although there is information from previous studies, it shows that the effect of this anesthetic on the same fish at different salinity levels is different. Because both brackish and salt water contain significant amounts of carbonate, it can have an impact on sodium bicarbonate activity when added to water. Since aquaculture can be done under fresh, brackish and saltwater conditions, the potential of sodium bicarbonate should be assessed when used as anesthetic for fish under these conditions. Therefore, the study of Arlene L. Avillanosa et al 2019 used red tilapia to verify the effectiveness of using sodium bicarbonate as Anesthetic for the fish in both fresh and brackish water conditions.Result:Research has demonstrated that sodium bicarbonate can be used as an effective anesthetic for red tilapia. In an earlier study, Opiyo et al. (2013) also showed that young tilapia, O. niloticus reacted positively to this substance when used as an anesthetic and there were no cases of dead fish. Acceptable anesthetic can be used during the treatment of recommended anesthesia in fish within 3 minutes and complete recovery after 5 minutes (Marking and Meyer 1985; King et al. 2005; Ross and Ross 2008). In the current study, the use of sodium bicarbonate as an anesthetic in red tilapia satisfies these requirements, except when this substance is used in brackish water at a concentration of 50g / l, in which the anesthetic On average, it takes more than 4 minutes. Dissolving sodium bicarbonate in water releases carbon dioxide. This gas is used for anesthetic purposes in fish at different water temperatures and is used primarily to soothe fish during transportation or to allow the handling of large numbers of fish (Bowser 2001). The study also did not observe any mortality in young red tilapia during anesthesia and post-recovery, because of the slow release of carbon dioxide in water after complete dissolution of sodium bicarbonate. Sodium bicarbonate can be an effective anesthetic for young red tilapia during short-term treatment and does not lead to fish death. Young red tilapia raised in brackish water take a longer time to be completely anesthetized than those raised in freshwater. In both culture media, the anesthetic concentration affects the duration of anesthesia in the fish. This study also emphasized that high concentration of sodium bicarbonate is needed to anesthetize red tilapia hybrids when the water temperature is high. The complete recovery time of the fish was not significantly different in both culture media and was not affected by the anesthetic dose. The application of sodium bicarbonate at high pH levels can be a good and inexpensive alternative to other anesthetics for fish. Based on the results of this study, the effective dose of sodium bicarbonate will result in complete anesthesia in red tilapia in brackish or fresh water of 50 g / l. At this concentration, the fish has been under anesthesia for a short period of time and can recover quickly without adversely affecting survival after exposure.Source : tepbac.com ...
Green Algae - Substitute Partial Pellet Feed for Tilapia
Nila

Green Algae - Substitute Partial Pellet Feed for Tilapia

A recent research team of Nguyen Thi Ngoc Anh and colleagues at Can Tho University showed that fresh / dried green algae can use alternative food source to partially feed commercial tilapia to reduce costs. in the breeding process. In the Mekong Delta (Mekong Delta), Cladophoraceae green algae is found year-round in brackish water bodies (extensive, improved extensive ponds, natural waters, waste water channels, etc.) in large quantities. and has high nutritional value. In Vietnam, green algae is distributed in brackish water bodies of Quang Ninh, Thanh Hoa, Hai Phong, Ha Tinh, Ba Ria-Vung Tau and Kien Giang (Nguyen Van Tien, 2007). In the Mekong Delta, green algae occurs all year round, often developing simultaneously with vermicelli, blue seaweed or alternating one after another in brackish water bodies, ponds, extensive ponds.The nutrient content of green algae (Cladophoraceae) is rich in nutrients such as protein content, carbohydrates, astaxanthin, essential amino acids, which are suitable food for plant-loving fish. Green algae is used as an alternative source of fishmeal in pellet feed for tilapia up to 50% and the ability to digest green algae protein reaches 93.9% (Appler and Jauncey, 1983). Other research shows that the green seaweed protein (Cladophoraceae) can replace up to 30% of the fish meal protein in pellet feed for gourami ( Osphronemus goramy ) seed (Nguyen Thi Ngoc Anh et al., 2014a) and 40% protein Soybean meal in vannamei diet ( Litopenaeus vannamei)) growth of shrimp was better than shrimp fed diets containing no green algae powder (Nguyen Thi Ngoc Anh et al., 2014b)Replace part of your diet with Green Seaweed for tilapiaThe experiment consisted of 7 treatments with 3 replications and randomly assigned, experimental fish were fed alternately with pellets and fresh green or dried green algae with the frequency of feeding in the following treatments: - Treatment 1: Food industry every day (control food, TA) - Treatment 2: Fresh blanket daily (RXT)- Treatment 3: Dry blanket every day (RXK) - Treatment 4: 1 day of fresh blanket 1 day of pellet feed (1RXT_1TA) - Treatment 5: 1 day dry blanket blanket 1 day pellet feed (1RXK_1TA) - Treatment 6: 2 days of fresh blanket 1 day of pellet feed (2RXT_1TA) - Treatment 7: 2 days of dry blanket blanket_1 days of pellet feed (2RXK_1TA)  Experimental fish were fed satisfactorily 2 times / day at 8:00 and 17:00 hours. Green algae are cut into short pieces of 2-3 cm before feeding. Leftover feed and algae are checked and collected after 1 hour of feeding. Ponds are exchanged once a week, about 30% of the water in the tank. The experiment period was conducted 60 days.ResultAfter 60 days of culture, the survival rate of the fish is not affected by the food, ranging from 93.3 to 98.3%. Growth rates of fish fed alternately 1 day fresh / dry green algae_1 days pellet feed did not differ. Applying alternately feeding green algae and food, the amount of pellet feed can be reduced from 29.6% to 38.6% and the water quality is better than the control treatment.Source  : tepbac.com ...
Experience Successful Tilapia Farming in  Philippines
Nila

Experience Successful Tilapia Farming in Philippines

Tilapia farming in brackish water pondThe brackish ponds in Pampanga are usually quite large with a pond of 3 - 15 ha and previously used for milkfish and shrimp production. When these ponds were used for tilapia farming, the farmers had no significant modification. For example, most ponds remain shallow, leading to higher temperatures during the summer.High temperatures mean higher evaporation rates of water, thus, increasing salinity and accumulating organic matter. High salinity ponds always kill tilapia, especially during the stocking period. Another factor is that these very large ponds have inefficient water supply and drainage systems. Water enters and exits through the same opening. Typically, the water near the gate has the best water quality, while about half or two-thirds of the pond has poor water quality, filled with dead algae, faeces, leftovers and even dead fish. This condition is not conducive to the growth and survival of farmed fish.Practical ways to minimize mortality and losses for farmed tilapia include:1. Dig deep into the pond at least 1.5 to 2 meters. It will make the water more stable in temperature, salinity, and dissolved oxygen and will take longer for fish waste to accumulate. Although it may be costly in the short term, it is a long-term solution to reduce mortality and increase pond productivity.2. Provide a separate drainage port opposite the water supply port (if possible). A 1-hectare pond with a width of 1.5 - 2 m should have a gate that can drain 750m 3 of water per hour so that up to 30% of the water can be changed during a tidal cycle when the outside water quality is good.3. If there cannot be an additional outlet, connect two adjacent ponds by installing two gates along the dyke separating the two ponds: one gate is installed on one end of the dyke and the other. The middle dike serves as a bulkhead. At one of the gates, install a paddle wheel, propeller or pump to move pond water. This has proven to be very useful especially when the water from the outside is of poor quality and the addition of new water is not possible. Water receives more oxygen while releasing ammonia and toxic gases in the process. The rate of decomposition of organic matter increases without competing with the source of oxygen with fish.4. Split very large ponds into small ponds. The smaller the pond, the easier it is to manage water quality. It may require some cost to do, but again, the results may offset it.5. Provide emergency aerators, reservoirs or spare water pumps. Although this can be expensive, it is an effective way to manage water quality when there is no immediate clean water source not only during the pond culture or construction period but also in emergency situations. 6. When raising tilapia in saltwater ponds, farmers need to build and provide adapted ponds and this pond must be provided with aeration system. This is one of the most serious problems in brackish water ponds that need to be addressed. The hatcheries were not built to provide fingerlings for salt water. The acclimation to salinity should be done slowly at a maximum rate of 0.5-1 ppt per day. This also serves as a means to avoid predation from exotic birds and fish during the fry stage.Growing tilapia in freshwater pondsAlthough tilapia farming started in freshwater ponds, many farmers were not well informed about the principles of pond construction. Here are some things to be reset to minimize the risk of inclement weather:1. Deepen the pond to a minimum of 1.5m, which makes the water temperature more stable during hot or cold seasons. Water quality degradation is also slower than in shallow ponds. If a pond owner can manage to have a depth of 2.5 or 3 meters, this is even better. Yields per hectare can be up to 66% higher.2. In the cold season, pond temperatures quickly rise or fall, which again causes stress on farmed fish. The hatchery should have an average depth of 1.2m for the pond and not 0.6 meters as is usually recommended. And the condition of the depth of the pond must be from 1.5 to 2 meters deep. 3. Provide emergency aeration equipment, backup water sources such as deep wells, reservoirs, etc. As a precaution, when water quality declines rapidly because farmers tend not to control feeding to keep up the harvest time or take advantage of the high market prices. As a result, dead fish occur.4. Supply nursery pond. 5. Provide physical barriers against all external animals and predators. The pond is surrounded with a net fence that has been proven effective.Source : tepbac.com ...
Benchmark’s Spring Genetics: First Company to be Granted with Import Licence for Tilapia Genetic Material to Colombia
Nila

Benchmark’s Spring Genetics: First Company to be Granted with Import Licence for Tilapia Genetic Material to Colombia

Spring Genetics, in a multilateral collaboration with the United States Department of Agriculture – Animal and Plant Health Inspection Service (USDA-APHIS), the Federacion Colombiana de Acuicultura (FEDEACUA), and Acuacultivos El Guajaro were successful at completing all the process to obtain for the first time in decades, a license to import the most needed new tilapia genetic material to the country. Spring Tilapia, the brand name of the tilapia strain provided by Spring Genetics®, has gone through 8 generations of selection at the breeding nucleus in Miami for key traits such as fast growth, survivability and yield, and more recently, advanced genomic selection for resistance to Streptococcus iniae and S. agalactiae.The tilapia genetic that would be available in the country, along with high biosecurity and continuous health surveillance at the breeding nucleus, would provide a significant opportunity for the Colombian tilapia industry to improve the productivity and sustainability of their business.The first shipment with new Import protocol As a result of the collaboration between Spring Genetics, USDA, APHIS and ICA, a new genetic material import protocol has been created and implemented for the first time in the country. The first shipment of genetic material to Acuacultivos el Guajaro, Spring Genetics distributor for the Caribbean Region, is scheduled at the end of September 2019. Ongoing negotiations with other Colombian companies are being held to secure a wider national reach. Spring Tilapia fingerlings will be commercially available in Colombia in 2020.Expertise and Technology transfer With nucleus in Florida, USA, Spring Genetics breeding program is designed and supervised by its sister company and Norwegian based Akvaforsk Genetics (AFGC), a leading provider of genetic improvement services to aquaculture industries worldwide. AFGC has extensive experience from more than 15 large scale selection programs covering 15 species in 25 countries across Europe, Asia, and the Americas.Source : Aquaculture Magazine  ...
Fillet Nila Merambah Indonesia
Nila

Fillet Nila Merambah Indonesia

Bisnis fillet nila sangat prospektif di pasar lokal dan internasional. Dua puluh tahun lebih sukses mengekspor tilapia ke mancanegara, Regal Springs Indonesia mulai menyasar pasar nila Nusantara.Perusahaan yang sudah 31 tahun membudidayakan nila di Tanah Air ini memandang kebutuhan masyarakat kelas menengah akan makanan sehat, segar, dan mudah diolah semakin besar dan belum terpenuhi dengan baik.“Penyerapan pasar tidak terbatas baik di pasar ekspor maupun domestik. Kita siap memproduksi sebanyak mungkin dan menjual sebanyak mungkin,” kata Sami Hamzah, Presiden Komisaris Regal Spring Indonesia (RSI) di Jakarta beberapa waktu lalu. Terbaik DuniaAchim Eichenlaub, Chief Executive Officer Regal Springs Group menjelaskan, perusahaan asal Swiss itu mengekspor fillet nila ke Amerika, Eropa, dan sebagian ke Asia.Produksi ikan bernama ilmiah Oreochromis niloticus itu ada di tiga negara, yaitu Indonesia, Meksiko, dan Honduras. Sepertiga produksi fillet ada di Indonesia dari pabrik di Medan, Sumut dan Semarang, Jateng.Regal Springs berinvestasi mencapai US$70 juta guna mewujudkan perikanan bertanggung jawab. Pengawasan produksi dimulai dari menghasilkan telur nila, pembenihan, pengolahan menjadi fillet, pengemasan, pengiriman produk, hingga penjualan.“Makanan kami sangat dikenal tanpa antibiotik, hormon, dan fosfat. Kami menyebut Naturally Better Tilapia. Kami menghasilkan rasa tilapia terbaik di dunia karena budidaya di danau, bukan di kolam. Metodenya sangat berbeda,” paparnya.Perusahaan yang bernama awal PT Aquafarm Nusantara ini membudidayakan nila di Danau Toba, Sumut. Setelah dua tahun mengembangkan produk, RSI pun meluncurkan produk fillet dan kepala nila di Indonesia. “Kami melihat bisnis ini sangat prospektif secara lokal dan internasional. Kami punya mimpi menjadi pedagang seafood terbesar di Indonesia,” ulasnya. Karena itulah, Achim menegaskan, Regal Springs akan terus berinvestasi di Bumi Pertiwi. “Kami percaya dan kami tahu tilapia dari Indonesia adalah tilapia yang terbaik di dunia. Nggak banyak produk dari Indonesia yang sangat siap menghadapi dunia dan kami sudah melakukannya,” tandas pemilik RSI itu. Pasar IndonesiaMenurut Sami, kelas menengah di Indonesia berkembang pesat dalam 10 tahun terakhir. “Negara kita lebih maju, lebih banyak orang yang mampu membeli fillet, masuk ke mall. Cita-cita kita, ekspor dan domestik 50:50,” ucapnya yang menyebut produksi saat ini 99% untuk ekspor.Meski tidak menyebut angka pasti target penjualan nila di Indonesia pada 2019, dia mengaku sudah banyak permintaan lokal yang masuk ke perusahaannya. Saat ini RSI membutuhkan sekitar 25 ribu-30 ribu ton nila setahun dengan rendemen fillet sekitar 40% dan sisanya sebagai produk sampingan. Sami mengaku siap memperbesar produksi dan menjamin pasar lokal dan global bisa menyerap asal diberi izin perluasan keramba jaring apung di Danau Toba. “Kalau kita diberi kesempatan untuk mengekspansi, kita siap,” ujarnya mantap. Sumber : Agrina ...
Why Biosecurity is The Best Defence Against Tilapia Lake Virus
Nila

Why Biosecurity is The Best Defence Against Tilapia Lake Virus

The first confirmed case of tilapia lake virus (TiLV) in the USA emphasises the need for producers to ensure biosecurity is a top priority, according to a leading US tilapia breeder.Last month, USDA APHIS released a statement outlining that the virus – an RNA virus that was previously detected in Asia, Africa, Central and South America – had been reported in Idaho. There is no current treatment or vaccine available. “Although this finding was controlled appropriately by the authorities, and the correct measures were taken to avoid losing containment on the outbreak, it highlights the importance of biosecurity and health surveillance programmes,” reflects Hideyoshi Segovia, commercial and operations manager at Spring Genetics.“It is important for producers to source fingerlings and brood stock from known and trusted sources that have the proper documentation ensuring that their fish are in healthy condition,” adds Segovia.Spring Genetics, part of Benchmark, has operated a biosecure closed breeding nucleus to which no external fish have been introduced since it was established in 2009. It has been screening against TiLV for the past three years as a standard practice.The company undergoes a stringent health surveillance programme that screens for known pathogens that cause diseases in tilapia, as well as screening against pathogens that may cause disease and affect tilapia production. It has never detected TiLV in its stock.The company’s screening programme randomly tests several batches of fish from the nucleus operation, on a quarterly basis, against pathogens such tilapia lake virus (TilV), infectious salmon anaemia virus (ISAV), infectious pancreatic necrosis virus (IPNV), Francisella, Streptococcus, Aeromonas and Edwarsiella, among other key pathogens. In addition, testing is done in every single batch of fish that is being shipped to a client, the testing to these batches is specific to the requirements the importer country demands.“Spring Genetics subjects itself to the strictest testing possible to protect their clients, OIE testing for all tilapia diseases are completed a minimum of four times per year, and the programme is in place to ensure that we can continue being a trusted source of broodstock and sex-reversed fingerlings for the industry,” Segovia continues.Spring Genetics is governed by the Florida Department of Aquaculture and has been a permit holder since 2009. The company has been approved by the USDA-APHIS-Veterinary Services as an aquaculture export facility for Oreochromis niloticus (Nile tilapia). “Acquiring fingerlings from Spring Genetics should represent peace of mind for our clients when it comes to biosecurity and disease risk management. This, coupled with high-quality genetics, and genetic programmes focused on growth, resilience and disease resistance, provides a significant opportunity for our clients to improve the productivity and sustainability of their business,” Segovia concludes.Source : The Fish Site ...
New Strains, New Gains For Nile Tilapia Producers
Nila

New Strains, New Gains For Nile Tilapia Producers

A strain of tilapia that has been recently developed by WorldFish in Egypt is producing significantly improved fish yields, lower feed conversion ratios and improved profits for farmers.The international nonprofit recently developed a new selective breeding programme in the Egyptian region of Abbassa, in a bid to improve on their well-known and widely-adopted Genetically Improved Farmed Tilapia (GIFT) strain, which was initially developed for production in Asia.The result, known as Genetically Improved Abbassa Nile Tilapia (GIANT), was developed using the same genomic techniques and a new study on the performance of the ninth generation of the GIANT broodstock suggests it is performing exceptionally well.The authors of the study, published under the title ‘Assessment of the impact of dissemination of genetically improved Abbassa Nile tilapia strain (GIANT‐G9) versus commercial strains in some Egyptian governorates’, in the latest issue of Aquaculture Research, looks at the impact that distributing broodstock of the strain to 11 broodstock multiplication centres (BMC’s) in five governorates. These centres then disseminated improved mixed‐sex fry to 160 tilapia hatcheries which supplied all‐male fry to 1,500 fish farms in 2017.In their study, the WorldFish researchers present results of an impact assessment of G9 of the strain in 83 of these fish farms in four Egyptian governorates – Kafr El‐Sheikh, Fayoum, Behera and Alexandria.Their research indicates that the use of GIANT in all governorates “achieved significantly higher (18.8%) fish yields (12.3%–26.4%) and 15.7% lower FCR (feed conversion ratio), reflecting a positive impact on their net profits compared with those who used commercial strains”.Moreover, they note that: “Overall, fish farmers who stocked GIANT had significantly higher average fish sales (5.567 US$/ha) than those who stocked non‐improved commercial strains (5.192 US$/ha) in all governorates”.However, they also note that farms in the four different governorates performed differently, with those in Kafr El‐Sheikh and Behera showing less of an improvement, which – they conclude –“indicates that some hatcheries may have crossed the different strains, which lowered the performance differences.” As a result, they add: “To get an objective analysis of the performance of the GIANT, it is recommended that similar assessment be undertaken with new generations of the strain supported by on‐farm performance trials.”Source : The Fish Site ...
The Bacterium that's Battling Streptococcus in Tilapia
Nila

The Bacterium that's Battling Streptococcus in Tilapia

New research suggests that including Bacilllus subtilis in tilapia diets can reduce mortality rates of those fish facing a Streptococcus challenge.Streptococcus agalactiae is one of the biggest health challenges facing farmed tilapia around the world, with outbreaks of the bacteria being blamed for a number of major tilapia health scares, not least the one affecting Lake Volta, in Ghana, of late.While some tilapia strains are now being bred to improve their resistance to the bacteria, the need for research into a wide range of methods for combatting its impact is widely accepted.In a new trial, conducted by a research team from the College of Fisheries at Huazhong Agricultural University in China, researchers have revealed that adding Bacilllus subtilis to tilapia diets can help to mitigate the effects of the Streptococcus.The researchers investigated the effect of adding different levels of Bacillus subtilis to tilapia diets had on growth, immune parameters, intestinal morphology and disease resistance in genetically improved farmed Nile tilapia. They noted fewer mortalities in the fish given B. subtilis in their diets and concluded that it “can effectively improve growth, immunological status and resistance against S. agalactiae infection in tilapia farming”.The research was published in the latest issue of Aquaculture Nutrition under the title: “Dietary supplementation with Bacillus subtilis LT3‐1 enhance the growth, immunity and disease resistance against Streptococcus agalactiae infection in genetically improved farmed tilapia, Oreochromis niloticus”.Source : The Fish Site ...
Manfaat Berlipat dari Budidaya Nila Sistem Bioflok
Nila

Manfaat Berlipat dari Budidaya Nila Sistem Bioflok

Jakarta – Upaya Kementerian Kelautan dan Perikanan (KKP) mengembangkan teknologi bioflok untuk budidaya ikan nila semakin dirasakan manfaatnya oleh pembudidaya ikan. Kini keberhasilan budidaya yang mereka lakukan meningkat signifikan. Hal tersebut tampak dari kelangsungan hidup atau survival rate (SR) ikan mampu mencapai hingga 90%. Selain itu, tingkat penggunaan pakan semakin efisien, dimana nilai feed conversion ratio (FCR) mampu mencapai 1,05 artinya untuk menghasilkan 1 kg ikan nila hanya dibutuhkan 1,05 kg pakan. Angka ini menurun drastis jika dibandingkan dengan pemeliharaan di kolam biasa dimana FCR-nya mencapai 1,5. Kepadatan juga meningkat tajam, yakni sebanyak 100 ekor/m3 atau 10 kali lipat dibandingkan dengan sistem konvensional hanya 10 ekor/m3.  Direktur Jenderal Perikanan Budidaya, Slamet Soebjakto, mengungkapkan hal tersebut saat dimintai keterangannya di Jakarta, Kamis (9/5). Dengan keberhasilan ini, Slamet meyakini bahwa pengembangan budidaya nila sistem bioflok merupakan salah satu terobosan untuk meningkatan produksi nila secara nasional maupun guna meningkatkan pendapatan pembudidaya secara signifikan, namun tetap mengedepankan prinsip-prinsip keberlanjutan. “Penerapan teknologi ini terbukti efektif dan efisien dalam penggunaan sumberdaya air dan lahan serta adaptif terhadap perubahan iklim. Sedangkan ikan nila sendiri merupakan salah satu komoditas air tawar yang potensial untuk dikembangkan karena tahan terhadap perubahan lingkungan, pertumbuhannya cepat serta lebih resisten terhadap penyakit. Jadi ini memang kombinasi yang sangat tepat” ujar Slamet. “Ikan nila semakin diminati masyarakat sehingga permintaan pasar meningkat tinggi, selain untuk konsumsi lokal juga merupakan komoditas ekspor terutama ke Amerika Serikat dalam bentuk fillet. Oleh karena itu produktivitasnya harus dipacu terus-menerus”lanjut Slamet. Slamet juga menjelaskan bahwa penguasaan teknologi budidaya nila bioflok kini terus diperluas di berbagai daerah melalui unit pelaksana teknis (UPT) perikanan budidaya. “Teknologi bioflok di masyarakat akan terus dikawal UPT-UPT dan para penyuluh agar tidak keliru menerapkannya, juga harus diterapkan secara benar sesuai kaidah-kaidah cara budidaya ikan yang baik seperti penggunaan benih unggul, pakan sesuai SNI, serta monitoring kualitas air budidaya”pesannya. Slamet meyakini teknologi ini juga mampu menjamin tersedianya sumber protein yang harganya terjangkau oleh sebagian besar masyarakat, guna memperbaiki gizi masyarakat, selain dapat menyediakan lapangan kerja. Sementara itu, Syamsul Bahari ketua kelompok pembudidaya ikan (Pokdakan) Indra Makmur Sukabumi, menuturkan bahwa selain keuntungan di atas, ikan nila yang dihasilkannya juga lebih gemuk dengan komposisi daging (karkas) lebih banyak serta kandungan air dalam daging lebih sedikit. Lebih lanjut ia merinci biaya investasi yang dikeluarkannnya yakni untuk pembuatan kolam beton ukuran 15 m3 sebesar Rp. 2 juta dan pompa air Rp. 500 ribu. Sedangkan biaya operasional untuk benih sebanyak 1.500 ekor, pakan 283,5 kg dan probiotik dan molase sebanyak 3 liter, serta kebutuhan listrik, sehingga total biaya operasional sebesar Rp. 3,9 juta. Dengan periode pemeliharaan selama 3 bulan produksi nila yang dapat diperolehnya mencapai sebanyak 270 kg, dengan ukuran panen 200 gr per ekor. Jika harga per ekor Rp. 26 ribu maka pendapatan kotor sebesar Rp. 7 juta.  “Keuntungan bersih budidaya ikan nila sistem bioflok yang dapat saya peroleh dari setiap kolam mencapai Rp. 3,1 juta per siklus, saya memiliki 10 unit kolam dengan rincian 2 bak tandon dan 8 kolam budidaya sehingga pendapatan bersih selama periode budidaya yang saya lakukan dapat mencapai Rp. 24,8 juta”, sambungnya.  Syamsul juga bercerita bahwa air media budidaya hanya sekali dimasukkan dalam wadah budidaya dan dapat digunakan sampai panen, penambahan air hanya untuk mengganti penguapan dan pengontrolan kepadatan. “Dengan budidaya nila sistem bioflok ini menjadi sumber pendapatan keluarga bagi pembudidaya dan pihak-pihak lain yang terkait dengan usaha ini, karena hasilnya dapat dijual ke usaha perdagangan ikan, rumah makan, jasa rekreasi pemancingan, pengolahan fillet dan lainnya”, tambah Syamsul.  ...
Streptococcus Vaccine Offers Hope for Tilapia Sector
Nila

Streptococcus Vaccine Offers Hope for Tilapia Sector

Hopes for the development of an effective vaccine to protect tilapia from Streptococcus have been given a boost following the publication of the results of a new study. Streptococcus agalactiae is one of the most widespread bacterial pathogens impacting the international tilapia farming sector, causing great losses of intensive tilapia farming – with the value of losses incurred in China (the world’s largest producer of the species) estimated at up to $1.5 billion a year.  Outbreaks of the disease are generally dealt with through the use of antibiotics, but a vaccine is seen as a preferable method for numerous reasons – not least due to fears of the spread of antibiotic resistance and because it leads to an imbalance of bacterial microbiota both within the fish and their habitat. The results of the study, led by researchers from the School of Life Sciences at Sun Yat‐Sen University, have been published in the latest issue of the Journal of Fish Diseases. In order to develop a potential live attenuated vaccine, the researchers developed a re‐attenuated S. agalactiae (named TFJ‐ery) from a natural low‐virulence S. agalactiae strain TFJ0901 through selection of resistance to erythromycin. When Nile tilapia were intraperitoneally injected with TFJ‐ery, the mortality of fish was decreased, while the RPS of fish immunized with TFJ‐ery at a dose of 5.0 × 107CFU was 95.00%, 93.02% and 100.00% at 4, 8 and 16 weeks post‐vaccination, respectively. ELISA results showed that the vaccinated fish produced significantly higher (p ...
Sistem Bioflok, Teknologi Budidaya Baru untuk Ikan Nila
Nila

Sistem Bioflok, Teknologi Budidaya Baru untuk Ikan Nila

Ada sekitar 3000 ekor ikan nila yang ditebar di kolam yang hanya berukuran 2 x 3 meter setinggi 80 cm. Begitu padatnya jadi tak ada ruang yang cukup bagi ikan untuk berenang bebas.Saat ikan sudah cukup besar maka ikan-ikan ini harus dipisah sehingga hanya tersisa sekitar 800-an. Kepadatan itu adalah kesengajaan. Sebuah teknik pembiakan ikan yang disebut bioflok, teknik pembiakan ikan dengan cara menumbuhkan bakteri di dalam udara.Bio berarti hidup, flok itu gumpalan. Jadi bioflok itu adalah gumpalan hidup. Jadi bakteri-bakteri itu tumbuh menjadi gumpalan yang akhirnya tumbuh menjadi makanan ikan. Dengan metode ini, sisa-sisa pakan atau kotoran ikan akan diolah oleh bakteri tersebut lalu jadi makanan lagi. Hanya memang tetap diberi pakan. Keuntungan sistem ini dibandingkan metode konvensional yang menggunakan air yang sedikit karena ikan di kolam ini memiliki persyaratan yang khusus.Baca juga: Tips Membuat Bioflok untuk Budidaya NilaSetelah sukses mengembangkan teknologi budidaya sistem bioflok untuk ikan Lele, kini Kementerian Kelautan dan Perikanan (KKP) melalui Direktorat Jenderal Perikanan Budidaya (DJPB) bekerja sama dengan peneliti Institut Pertanian Bogor (IPB) menggunakan teknologi ramah lingkungan untuk ikan Nila.Ikan nila dipilih sebagai sistem lanjutan bioflok, karena nila termasuk kelompok herbivora. Membutuhkan proses pembesarannya lebih cepat. Selain itu, ikan nila juga mampu mencerna flok yang tersusun atas berbagai mikroorganisme, yaitu bakteri, alga, zooplankton, fitoplankton, dan bahan organik sebagai sumber pakannya. Itu menguntungkan dalam budidaya di kolam.Penerapan dan pengembangan budidaya Sistem bioflok merupakan hasil dari inovasi tanpa henti yang dilakukan oleh DJPB terhadap teknologi yang efektif dan efisien termasuk dalam penggunaan sumber daya udara, lahan dan kemampuan yang digunakan terhadap perubahan iklim.Budidaya ikan nila sistem bioflok ini sudah mulai didukung pengembangannya di pesantren-pesantren dan kelompok masyarakat lainnya di Jawa Barat dan Lombok NTB.  Keunggulan Budidaya Nila Sistem BioflokBudidaya ikan nila sistem bioflok memiliki sejumlah keunggulan, diantaranya:Pertama, meningkatkan kelangsungan hidup (survival rate/SR) hingga lebih dari 90 persen dan tanpa pergantian air. Air bekas budidaya juga tidak berbau, sehingga tidak mengganggu lingkungan sekitar dan dapat disinergikan dengan budidaya tanaman misalnya sayur-sayuran dan buah-buahan.Kedua, Feed Conversion Ratio (FCR) atau perbandingan antara berat pakan dengan berat total (biomass) ikan dalam satu siklus periode budidaya mencapai 1,03. Artinya 1,03 kg pakan menghasilkan 1 kilogram ikan Nila. Jika dibandingkan dengan pemeliharaan di kolam biasa FCRnya mencapai angka 1,5.Ketiga, padat tebarnya pun mampu mencapai 100-150 ekor / m3 atau mencapai 10-15 kali lipat dibandingkan dengan pemeliharaan di kolam biasa yang hanya 10 ekor / m3.Keempat, aplikasi sistem bioflok pada pembesaran ikan nila juga telah meningkatkan produktivitas hingga 25 - 30 kg / m3 atau 12-15 kali lipat jika dibandingkan dengan kolam biasa sebesar 2 kg / m3.Baca juga: Budidaya Ikan Nila dengan Teknologi BioflokKelima, waktu pemeliharaan lebih singkat, dengan benih awal yang ditebar tinggi 8 - 10 cm, selama 3 bulan pemeliharaan, benih ini mampu tumbuh hingga ukuran 250 - 300 gram / ekor untuk mencapai ukuran yang sama di kolam biasa membutuhkan waktu 4-6 bulan .Keenam, Ikan Nila dari hasil budidaya sistem bioflok lebih optimal sebagai hasil pencernaan makanan yang optimal. Komposisi daging atau karkasnya lebih banyak, juga kandungan air dalam dagingnya lebih sedikit.Secara bisnis, budidaya ikan Nila juga sangat menguntungkan. Harganya cukup baik dan stabil di pasaran yaitu Rp. 22 ribu per kg. Dalam pemeliharaan ikan sistem bioflok yang perlu dijaga adalah cadangan oksigen yang larut dalam udara, karena oksigen disamping diperlukan ikan untuk pertumbuhan juga dibutuhkan oleh bakteri untuk menguraikan kotoran atau sisa pengeluaran di udara. Pada ikan nila, kadar oksigen terlarut (DO) di dalam media pemulihan minimal 3 mg / L. (234)Sumber : Agronet   ...